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1.0 INTRODUCTION

In this report we summarize various aspects of our

investigations of near and far wing pressure broadening theory

as it applies to molecules of atmospheric interest, particu-

larly H 20. The main body of the report, Section 2.0, describes

a new and rigorous theory for calculating far wing absorption.

This theory satisfies the Fluctuation-Dissipation Theorem and

includes all possible line-coupling effects. A journal ar-

ticle describing the theory in further detail is planned for

the future.

Section 3.0 summarizes results of our detailed cal-

culations of HO halfwidths for both N2 and self-broadening.

The results for N2 broadening have been incorporated irto the

latest edition of the AFGL Atmospheric Line Parameter Atlas.
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2.0 RIGOROUS T-MATRIX THEORY OF MOLECULAR FAR-WING ABSORPTION

2.1 Preliminary Considerations

We shall discuss a microscopic theory of far-wing

pressure broadening which contains the following features:

a) The theory satisfies the Fluctuation-Dissipation Theorem

(FDT).

b) The theory contains all possible line-ccupling effects.

c) In principle the theory contains pressure induced transi-

tions (electronic states must be included).

d) The present theory can probably be modified to include

two-body bound states, i.e. dimers.

The theory which we shall discuss will be rigorous

whenever the far-wing absorption can be described in terms of

the binary collision approximation in its simplest sense. By

this we mean the following. If a() is the absorption co-

efficient, the binary collision approximation is appropriate

when, experimentally,

a(w) - nrad. nper.' (i)

for foreign gas broadening,

n 2 (2)( rad.

for self-broadening, where nrad. , nper. are the radiator and

perturber densities, respectively. We comment that the ex-1-4/
isting experimental measurements of far-wing aborption--/

for molecules of atmospheric interest, e.g. F2 0 and C02, are

completely consistent with the above conditions, at least at

the relatively low pressures appropriate to the measurements.

The present theory does not attempt to correctly

treat the strong dl,Sorption near the line centers of allowed

band. It is i nporiidnt, howfever, to put this neglect intr,

A 2Ll



perspective. For most cases, the spectral region near the

line center is well approximated by the impact approximatio.,

which takes the form

ffi
a() r nra . (3)(-rad. f)2 + r 2

fi fi

for a transition i f. Here the half-width can be written

rfi z nper. v afiO (4)

where v is the mean relative thermal velocity and afi is a

scattering cross-section calculated in the binary collision

approximation, with afi independent of density.

In the impact approximation, a(w) satisfies condi-

tion (1) as soon as the approximation

Ffi ~ rfi
~ , (5)

(W-Wi)2 + r2 (W-W )2

is appropriate. Clearly if Aw = IW_-fjI > i0 rfi, this ap-

proximation is valid to within one percent. A typical value

for rfi appropriate to H20 self-broadening at 10 Tort pressure
is .fi Z.006 cm-1, hence Aw > 10 r fi corresponds to

Ah > .06 cm-1 .

From these considerations we conclude there is a

small region near the line center where condition (1) does

not apply. This region should be well described by the usual

impact theories. Beyond this region, condition (1) applies

and the theory presented in this report should be appropriate.

Moreover, in Section 2.4 we suggest a reasonable interpolation

formula to describe the entire line profile.

We regard as imperative the requirement that a far

wing theory satisfies the FDT. In the far wings factors of

the form exp{± 8hAw} are highly irportant, particularly in

terms of the temperature dependence of the far-wing absorp-

3



tion. Although a number of authors have presented T-matrix
5-9/

approaches to lineshape theory,- it is not clear to what

extent these theories are consistent with the EDT.

The Fluctuation-Dissipation Theorem has been incor-

porated into a number of essentially phenomenological

theories 10 / using the Egelstaff-SchofieldI I- 1 5 1 complex time

transformation. These theories force the FDT to be valid on a

line-by-line basis, using a lineshape function involving a

number of adjustable parameters, typically a time between

collisions, Tc, and something analogous to the duration of

collision, Td"

Our present theory gives a microscopic prescription

for calculating the above type lineshape functions, and, in

addition, the prescription is valid when line-coupling effects

are included.

2.2 General Theory and Binary Collision Approximation

We write the absorption coefficient as

4T 2 L(6)

where X"(w) can be written

X"(w) tanh ( [(w) + 4(-w)], (7a)

Ul - e- P&W ) *(w), (7b)

= [k(w) - ¢(-)], (7c)

with

Ax Cw) I ) <Ii-Ir>I2 6(& -Ahw).C)
IF

Here I, F refer to exact eigenstates of the many-body syster.,

n is the system volume, and

Ai
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p(I e-KI/Tr e-OH (9)

is the equilibrium canonical density matrix. The equivalence

of the three formulas (7) is contained in the FDT

0(-w) :e -P4 OM , (10)

which is easily proven from Eq. (8).

In the time-domain the theory takes the form

X"(w) tanh f dt e-i rt

( - dt e-iWt (tll(1b)= l7 ~t [ *(-t)+-t (lic)

-wO

Go

777d -i 'W (1t

where

¢(t) Tr {pi.j'(t)), (12)
-1 T

(- Tr {p o"(-t)}

:- 1Tr {piP(t)-j), (13)

with (t) e p e. The equivalence of formulas

(11) is contained in the time-domain statement of the FDT

-t :¢(t + ifa), (l')

which follows from (12), (13). Condition (14) must also be

consistent with the condition
Z*

*(-t) = *(t) , (15)

which guarantees that O(w) is real.

In all of the above equations the Hamiltonian H re-

fers to the full many-body Hamiltonian. We now invore the

5



binary collision approximation in its simplest sense. In the

time domain we argue that the far wings will be determined

by times, t < T where Td is the duration of a collision.

At typical low or moderate densities of experimental interest,
we argue, for such short times, that it will be impossible

for a given molecule to interact with more than one perturber.

Hence we write
N

p(t) air Tr {piV-1(t)jpair' (15)

where Npairs is the number of possible pairs of radiating and

perturbing molecules. In particular

N pairs 1 Nrad. Nper.' (16a)

for foreign broadening,

N rad.

pairs - T rad.

N
2
Pad.rad. (16b)

for- self-broadening. Then in Eq. (15), the trace is to be

taken corresponding to p(H), H appropriate for a two-bcdy

(pair) Hamiltonian. In this expression we also have

(foreign) (17a)

* (1i + P 2) (self), (17b)

where 1, 2 refer to radiator and perturber respectively.

In the frequency domain we obtain

#7dt -iwt

f- w 0(t) e

Npar= I p(Ei)I<IljIF>I2-6(Er - EI --Ww ), (18)

6



where I, F now refer to exact eigenstates of the two-body

Hamiltonian. It is clear that the binary collision approxi-

mation preserves the FDT, in particular

e!$-)= e -84 W 0(w). (19) '

2.3 T-Matrix Theory

We begin by rewriting Eq. (18) as

N ( ) Npa ir s  0
I dF I p(Ei)I< IhIF>I2
-0 IF

0 6(EI-E) S(Er-E-4fw), (20)

or

N pairs 008
RZ fz dE e-' I J<I141Jr>1 2

-0 IF

*S(EI-E) 6(EF-E Kw), (21)

where Z = Tr e- H is the two-body partition sum. Equation

(21) can be re-expressed as a trace according to

Npair s

)= ff dE (E)

* Tr {6(H-E)j 6(H-L-)i), (22)

where D(E) E e-E /Z. Note that 5 is a number (not an

operator).

Our object is now to manipulate the trace expression

such that when the trace is evaluated in the representation

of uncoupled (non-interacting) two-body states, the integral

over dE can be simply evaluated. To accomplish this, we begin

by invoking the standard identity
:H1L i {Hi_~o+)-1

I (If-)io - (l-E+io +-}. (23)

7
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For a general complex energy z we also have the identity

(H-z) - - (H 0-z)- - (H0 -z)- V(H-z)- I  (24)

* where V is the two-body potential, and where H0 denotes the

non-interacting two body Hamiltonian, i.e.

H = 110 + V.

The identity (24) can also be written in terms of the two-body16/
T-matrix,--6 according to

(CI-z) - I = (H0 -z) - (it 0 -z) T(z) (H0 -z)- , (25)

where T(z) satisfies

T :z) V - V(h0-z) -I T(z), (2)

and

1* *

T(z) T(z ). (27)

Now from Eqs. (23), (25) we obtain

6(H-L) 6(H 0 -E)

1 +)-i
- {(1 0-E-io T(E+io+) (H -E-io + ) -

- (H0-E+io +-
I T(E-io + ) (H0 -E+io+)-l} (28)

we now subtract and add a term (H--E+io+) T(L+io+

(H c-E-io+-1, and obtain

601-L) 6(H 0 -E)

* - 6(01-EE) T(E+io+ ) (Ho-E-io+) -

1+ _1 ++- (H0-E+ i° +  {T(E+io +  (h0-E-io+ -

- T(E-io ) (H 0-E+io ) 1. (29)

8



In the bracket expression we subtract and add a term

T(E-io ) (H0-E-io+)
1 and obtain

6(H-E) = 6C1!O-E)

- 6(H 0-E) T(E+io
+ ) (H 0-E-io+)

- I

- (H0 -E+io) -1 T(E-io + ) 6(H0 -E)

- (H 0 E+io + [T(E+io )-T(-io + (H0 E-io +

(30)

Finally, in the last term we invoke the operator form 1 7' 16 / of

the optical theorem

T[T(E-io+ ) - T(E+io+)]

T(E+io +) 6(H0 -E) T(E-io+). (31)

This yields the decomposition

6(H-E) = 6(H0 -E)

1
- [6(01 -E) T(E+io + ) ( 0-E-io+) -

+ (H0-E+io +
-I T(E-io + ) 6(H0-E)]

+ ++ (H -E+io+) T(E+io + ) 6(H0-E) T(E-io
+ ) (H0 -E-io+)

(32)

It should be noted that the right hand side of Eq. (32) is a

sum of three Hermitian operators.

The above decomposition of the operator 6(01-F) is

clearly sufficient to enable the dE integratior in Eq. (2?) to

be performed when the trace is evaluated in the representation

of non-interacting states. In particular, every term in Eq.

(32) contains a factor 6(10 -E). The matrix elements of this

9



operator between uncoupled (non-interacting) two-body states i,

j are given by

<il6(H 0- E)lj> = 6 i~i 6(c i- E). (33)

Using the identity (32) we can now decompose Eq.

(22) into terms involving products of:

a) No T-operators

b) One T-operator

c) Two T-operators

d) Three T-operators

e) Four T-operators.

Before doing this, it is convenient to rewrite M(E) e-E/Z, as

(£) : 0(E) V , (34)

where

P0 (E) = e- E/Z0  (35)

is the unperturbed density function, with Z0 = Tr {e- SH0},

and where v = (Z 0/Z) is the ratio of the unperturbed to the

exact partition sum. Evaluation of the constant v is clearly

non-trivial. However, one suspects that the approximation

v = 1 should be adequate, and this approximaticn in no way

compromises the validity of the FDT.

From Eqs. (22), (32) O(M) decomposes into five terms

€(w) = 0(w) + 01 (w) + 02 (w) + 04 (w) + 05 (w). (36)

The terms are given as follows

N

* 0 (W) V n L dE P0 (E) Tr {6(H 0-E)' 6(L0 -E-4W)ja), (37)

10



N Go

V par - f--f dl' p (E)

0

-00

*Tr {6~(H-Ei (it -E-tioro 4Y T(E+ io+ F E-rw-)

+ Q(10-E-ihwi)TC+- Io ('Ehw--l)fwH- EO --

+ [(H 0- Eo)~ T(E+io) H(0-E)- 1(-i

*(0 -Ei 4  0 O(0 -- w)1 (9j *3() +N pairs d00 0 E

. Tr (H 1i-E)') H-EIWi T(E~ffo4 ) +1
0 0

* 6(0 -E-4I1w) T(E+-lwio) (H 0-E-W-io 4

+ (H 0-E-l+io r(E+i + 6( - ) (0 E-io+j)]~1 4

Th+ diinltrs 4()ad*() novn

~~..~( Ipouctsof thre aM ourhw'1 (39)ic~ il o b osi

in any d NetaiFr co0e0e~,tis aelse r et
2.5.=+ Q EPoE

Tr U 0- ) T(~i~ + (ifE-i+11



The six terms €0(), ... . 5 (w) individually

satisfy the FDT. The proof is the same in every case, and

consists of the following steps:

a) Write down the corresponding expression for n(-w).

b) Make the change of variables E - E + -w in integration.

c) Use cyclic invariance of the trace.

As an example of the procedure, we consider

Npairs dE
O V f dEp 0(F)

-00O

•Tr {MH0- E)'1 6(H0- E+ Kw )11.

Now let E - E +,;Kw, and use the fact that

+, -- =h e MwP(F). (41)
0Z 0  P0

Then

N 0
0 ( - W) " e-airs f dE p0(E)

•Tr {MH C-E-.K),l ml 0- E)1}.

Using cyclic invariance of the trace we then obtain

0- 0(-w =O e 6  0(W). (42)

Now it turns out that the terms, 0(w) and f1(w),

involving zero and one T-matrix have nothing to do with "far-

wing," absorption and must he discarded. For O(,,) this is

" almost obvious since the expression does not involve the in-

teraction. We want to state somewhat more carefully the mean-
I ing~ of dropping these terms, however.

ThLe terms 0(W) and i(w.) would rigorously vanish

if, in the "far-wing" region, no local lines of the allowed

1]2
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spectrum were present. However, in a realistic spectrum there

will always be some weak allowed transitions in the "far-wing"

spectral region. In this case to obtain the true "far-wing"

absorption one must subtract out the contribution from local

lines, both experimentally and theoretically. In our theo-

retical treatment such contributions are easily identified,

and can be eliminated.

Consider a product of the form

<ill f> 6(Ef-Ci-4f,) (43)

where fi>, If> correspond to (uncoupled) eigenstates of H0.

If the quantity (43) does not vanish then there is certainly

a local ine of the allowed spectrum present in the "far-wing"

region of interest. This contribution must be dropped, (a)

because it doesn't correspond to true far-wing absorption,

and (b) because the local line contribution is incorrectly

treated by our formalism.

As an exaimple, evaluation of 0,() in the represen-

tation of uncoupled states gives

Npairs

U P0 C) (f~e1w
if; ~= v a fp(i

I l<iI_ If> .1 2,(4 )

In this equation Ji>, If> are, strictly speaking, two-body

eigenstates, including the wavefunction for relative transla-

tional motion. However, because j does not operate on either

the translational wavefunction or the perturber wavefunction,

it is easily seen that (44) is correct with i> and If> taken

simply to be the internal states of the radiating molecule.

* According to our previous discussion, (44) must be

dropped since all non-vanishing contributions correspond to

local lines which are incorrectly treated. We might also

note that M0(w) does not have a sensible dependence on volume.

13



Since N pairs :Nra d . Nper.' we see that

€0 ( )  n rad . n per . 0,

which diverges as 02 - -. The term i(w) can also be elimin-

ated for the same reasons, i.e. we can show that every term

in M contains a factor corresponding to Eq. (43).

We now proceed to evaluate the expressions for

and 03(w) in the representation of uncoupled two-body states.

We obtain the following explicit results.

4.

€2 pairs (

<ij~~jk2.fjji

<jlT(C k+io )Ik> < k lT(c k - i o+)l> 6 (Ek-Ci-1w)

+ < 1+ k z

<jIT(E.+io+ )i> < iiT(c.-io + ) k > 6(c9-i-fo), (45)

Nairs
4€3 (u) - v , 0(ci)

ijk 0 i

. <j1_71k> .<Xj~ji>

Ck- j -,w CCi-K

* •<iT(e+io+ )jj><kIT(ek+io+)jt> 6 k ( -- )

+ < ilpIk> .< l lJ>

++

<jIT(ci-io )Ii><kjT(C-io+)19> 6(c-C i-iw)}. (46)

14



Several comments on these results are in order.

First we observe that the expressions contain line-ccupling

contributions, since none of the terms involve simple matrix

products of the form l<il4ll>l ' . It is a straightforward

exercise in juggling indices to prove that 02() and 03()

are real and individually satisfy the FDT. In obtaining the

expression for *3( ), two terms have been completely elimin-

ated because they contained factors of the form (43). Finally

we note that every p matrix element is multiplied by an energy

denominator containing the same indices, e.g.

J 1

If the energy denominator can vanish in the spectral region

of interest, and if <iJiPIj> 9 0, then the contribution is to

be dropped because it corresponds to a local line in the "far-

wing" region. In all of the discu,sion which follows, we

shall assume that all allowed transitions are far removed from

the "far-wing" spectral region of interest.

To complete the formal discussion we note from Eq.

(26) that the matrix elements of the T operator satisfy the

"integral" equation

<jlT(z)li> = <jlVli> - C ~ k< I()i - , 07)
k k-

From Eq. (27), the rule for taking complex conjugates of
.atrix elements is

(<jlT(Z)li>) <ilT(z)'lj> = <iiT(z*)!j>. (48)

The matrix elements which appear in Eqs. (45) and

(46) car, also be expressed in terms of the ingoing Ii> and

outgoing Ii> + wave solutions of the two-body Schroedinger
equation. Consider, e.g., the matrix element <jIT(Ei+io+)li>
which occurs in Eq. (45). From Eq. (47) we have

15



+ < IVlk><klT(C +io )Ii>
<jfT(e.+io+ )i> <jIVli>- E + (49)1 k £k-Ci-io0

The states i>4 are given from scattering theory
6 /

as the solutions of

it>+ = Ii> - ( )0- Ciio Vli>+. (50)

Now consider

<j lVlk><klVli>+<ilvli>+ = <fIli> -I + (l
k i

Comparing Eqs. (49), (51) we see that the "integral" equations

are identical, hence that

<jlT(ei+io+)li> = <jlvli>+. (52)

In this case the problem reduces to solving Eq. (50) for

It>+. By multiplying Eq. (50) on the left by (10-ei-io+),

and noting that (H0-ei)li> = 0, we obtain

Hli> = Cili>+S (53)

which is just the Schroedinger equation for the unbound states,

with the boundary condition that Ii>+ corresponds to an out-

going wave. Similarly, in Eq. (46), the matrix element

<jlT(Ei-io+)Ii> can be replaced by

<jlT(Ei-io+)Ii >  = <jlvli>_. (54)

Finally, the uncoupled two-body states which we have

dencted Ly li> are eigenstates of the Hamiltonian

F • h(0) (1) + Hint (2) + 2 2  (55)0 : int int(2 7M -+ 2 $5

r

where the first two terms are the Hamiltonians for the in-

ternal states of molecules 1, 2, and where r = rI - r2 is the
relative, transldtiornal coordinate, with

16
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-. i

m1 m2 1M
M 1 + ,2 (56)

the reduced mass. Equation (55) does not contain the transla-

tional motion of the two-body center of mass. Since neither,

V or V involves the center of mass coordinate, its contribu-

tion to Eqs. (45), (46) cancels and need not he considered

further.

The eigenstates of (55) can be written

li> = I i(1)>I~i(2)>I i > ,  (57)

where the translational states are given by

i( )  <r i> - - e 1 (58)

These are orthonormal according to

<k l~> = 6 ki. (59)

In the limit of infinite volume, sums over k are converted to

integrals using the standard prescription

Ik ""~~ d 3 - 'd (60)

k ( 2 r) 3

2.4 Simplified Discussion for Comparison with Phenomenologica]

Lineshape Functions

In this section, for simplicity, we shall consider

only the f2 (w) expression. We shall further make the un-

coupled line approximation and we treat the internal states

as non-degenerate. In particular, we ignore the (2j+l)-

fold degeneracy of the rotational states.

We begin by rewriting Eq. (45) in the form

17



N
()= V pairs P po(CE)

S" ijk

J 1 2
I, + I

S<j IT(Ek +io + ) k><klT(k- i )It> 6(c C.--hW)
k k k i

+ <JeUI > . -ifJlt- e-(Ck-i)
C.- E -hw C.-E.-hw

* <£jT(F +iO )lk><klT(E -io+)li> 6CC- C +mw)}. (61)
k kj

An uncoupled line approximation can now be made by setting

2k j in the first term, and 2 = i in the second term. It

should be noted that this is an approximation only as it per-

tains to the internal states of the radiating molecule. If we

consider <iijjj>.<ZI Ii> and remember that p does not operate
on the translational states or the perturber states, then we

must have £ = j for the translational and perturber states.

The uncoupled line approximation now yields

N
W airs X P (E:)V<ilV-jV * ( .i), (62)

with

1. £ (w-wi)
1r ji W i (63)

ji-Ji ( _ )2

r i(w-W. I [ {I<iIT(c +io+)jk>12
j i j i h2 k k

7ri 6(w-, -S• -ji- kj

+fh(w-w .~I m + 12
+ e i I<ilT(F + ioo)jk>I

Tr 6()-w i+ki) (64)
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with wj - j-E)

That these equations explicity satisfy the FDT can

be seen as follows. With X a general frequency, one deduces
from Eqs. (63), (64) that

Oij(-X) =e (X). (65)

In particular, with X = w - wji, we have

(ij (ji-w) = e- ;(W-wji) ji(w- ji). (66)

Now, from Eq. (62)

N

02(- ) po(ei)I<il I>I2 ji(-w-wji). (67)

1j, usin p:31 <jI

By letting i , using p0 j (i e-

VI~I , we obtain

N
Npairs

c 2 C-) : v n [. pO(C i)<i1jlj>I2
1J

* e- ji ij(Wji-W). (68)

Then from Eq. (66) for ij(c..-w), we see
S31

2(-w) = e -  2(W).

The above proof of the FDT is completely analogous

to the type of manipulations which are used in phenomenological

theories 0 / constructed from the Egelstaff-Schofield complex-

time transformation method. In the present theory we have a

well-defined prescription for calculating the lineshape func-

tion in terms of the two-body T-matrix.

We might also mention that, although our present

theory does not claim to correctly treat the near-wing ab-

sorption, one can write down a perfectly reasonable inter-
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polation formula which should be completely adequate for cal-

culational purposes.

Let us rewrite Eqs. (62), (63) as

v nrad.02(w Z. PO( )1< ij-V j>j 2  cji(W-W ji (69)

Oji(W ji N per. +i(-wji

1 ji ji (70)
Tr (W-W i2

with ji(W-Wji E) - per. Fj (W-Wi ). (71)

The suggested interpolation formula is simply to

replace Eq. (70) by the expression

~ r..(w-w..)
](W-W. 3 31 (72)

ji 1ji (__ _ji )2+ i_ _ji )2

Although this formula does not rigorously satisfy

the FDT, the near-wing violation is totally negligible. In

the far-wings the formula reduces to our previous result,

which does satisfy the FDT. In the near-wing region formula

(72) reduces to the impact theory, i.e.

~ r .. (0)

*~~(- ji(a-W.~

j(-+i) = ( _w )2 +p .i(0)23
i ()

From Eqs. (63) and (7]) we see

r.(0) N p { I<jIT(Ek+io+)Ik> 12
per.-2 k

Ek+o )jkI2 _W 6(W k-w)}. (74)

20



This is essentially the general impact result. To obtain the

completely general impact result in an uncoupled line theory,

one must also include the contribution from 3(M), as given

by Eq. (46). In this case the effective r ji(W-W. ) is simply

the sum of contributions from the *2( ) and 03(w) terms. This

effective r can then be used in the interpolation formula
(72).

It should be stressed that the uncoupled line theory,

discussed in this section, may be inadequate for describing

the extreme far-wing absorption. Referring back to Eqs. (45)

and (46) for *2( ) and 03 (w), one can see that the full

theory, which includes line coupling contributions, allows

for more intermediate states, hence more possibilities for

energy conserving 6-functions at large-hw. In addition, the

more complicated terms, *4 and *,5 which are listed in Sec-

tion 2.5 may also become important in the far-wings.

Finally, to carry out detailed calculations within

the present formalism, one must ultimately deal with the prob-

lem of solving the two-body Schroedinger equation (53). Al-

though this is an extremely complicated problem, we believe

that progress can be made by suitable use of the adiabatic

approximation, coupled with semi-classical approximations,

e.g. WKB, for the translational motion of the system.

2.5 Higher Order Terms

The terms 0() and 0,(W) which appear in Eq. (3)

are given explicitly by
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04V par dE P O(E)

*Tr U[6110-E) T(E+io+) (H 0-E-io+V 1

+ (it -E+io + T(E-io+) 6~(H 0-E)]j

*(H 0-E-1W+io + 1'(E+.Kw+io ) 6(h 0-E--ici)

+ + 1i
*T(E+riw-io )(1H 0 E-iw-io V 1'

+ (H 0 -.+j )o T(E+io+) 601 0-E) T(E-io+) (H O-E-io ) j

(60 - :- T(JE+h'w+io+) (H -E-how-io +
0 0

+ (1,0-E--w+io 1 T(E+,c1w-io+) 6C010-E-,hw)Ij1, (75)

aV dE p 0 M)

-CO

*Tr {C1-10-E+io + T(E+io ) S(IH0-E) T(E-io+

01 (H-E'-io+)- j1 (H 0-E-.hw+io)

*T(E+.h'w+io +) 6(110- E-hw) T(F+;?iw-io +

* 1-E-hw-io+-l()

These two terms may be shown to individually satisfy the EDT,

using the procedure outlined in the text.
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3.0 NEAR-WING CALCULATIONS OF H 0 PRESSURE BROADELING

3.1 Pressure Broadening of 1120 Transitions by N and Air2 2

We have carried out impact approximation calcula-

tions of 1{,0 halfwidths for N2 (air) broadening. The main

motivation for undertaking this work was to reconcile theo-

retical calculations with the narrow observed widths measured

by Eng 19 21  and others for high J transitions. In addition,

we have carried out the first calculations of H2 0 pressure

shifts, and these have been compared to the experimental

shifts measured by Eng.

Our calculations have been described in detail in a
22/JQSRT article- which is included in the present report as

Appendix A. Here we give a very brief summary of the results.

The original calculations of N2 and self-broadening
2 23/

for H20 were carried out by Benedict and Kaplan- using the

standard Anderson-Tsao-Curnette (ATC) impact approximation

theory. The results of their calculations have stood up re-

markably well, considering that only one accurate measurement

was available at the time the work was carried out. However,

the Benedict and Kaplan calculations, with the Anderson mini-

mum impact parameter, bmin, fixed at the kinetic diameter
00value of 3.4 A, yield halfwidths which are too large by a

factor 4.k* compared to the experimental results of Eng for a

number of high J transitions. Although better agreement can

be obtained from the Anderson theory by reducing b min, we

have shown that one can set bO  equal to zero in the ATC

formalism and the calculated halfwidth for the transition

(15, 0, 15) , (16, 1, 16) is still too high; see Figure 2

of Appendix A.

We have carried out cri]culations using a formalism

developed by one of the preseit authors.- We call this

formalism the Quantum Fo'urier' Transform (QrT) method. The
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method differs from Anderson's irn that energy and momentum
are rigorously conserved in the theory, and a Boltzmann aver-

age over translational states is included. These combined

conditions lead to result that the probability, P(C-q, AE), of

encountering a collision involving momentum transfer h, and

with inelasticity (total change in internal energy) AE, is

proportional to

+J 11/22P=q, A) - (m exp[ -Om (AE) 2 ], (77)
.. L 2 q 2  24f 2 q 2

with 1 i/(kBT) and m = m lm/(m 1 +m2 ) the reduced mass.

From Lq. (77) we see that the collision probability

is a C(aussian in the inelasticily parameter, hence the proba-

bility decays rapidly for large inelasticities. In the

Anderson theory the corresponding probability decays more like

a simple exponential. This means that collisions involving

large inelasticities are given much less weight in the QFT

treatment, hence are less efficient in producing broadening.

Since the high J transitions typically involve large AE's,

the QFT theory should predict narrower halfwidths.

This is, in fact, tht, result which comes out of our
calculations. Letailed compari n Lctnn theory and exper-

irent may be found in Appendix A. In obtaining reasonable

agreement with exlperiment (at high J) it is still necessary
m into substantial],/ reduce the value of b . The narrowest oh-

served transitions require a value of r n of order 1.5 A.

This value seems too small to be physically believable, so

that the resultirig explanation is still not completely satis-

factory. Since the narrowest lines are only of order three

Doppler widths, aiid because these lines are unresolved doub-
lets, it seerrs possible that some complicated combination of

motional narrowing combined with line-coupling might contrib-

ute to the observed narrow widths. We have not investigated
this possibility it detail, however.



The results of our calculations have been incorpor-

ated into the latest edition of the AFOL Line Parameters
mihAtlas.- 5 / The calculations were carried out with b0  set at

0
a compromise value of 1.75 A. A comparison betwen the re-

sults from a previous AFOL tapc and our most recent computa-

tions is shown iii Figures I through 4 for the R(1, 1), Q(l, -1),

P(-1, 3), R(3, -1) series transitions. The state index on

these graphs is the integer J(J+l) + Ka - Kc + I for the lower

state. On th.cse figures we have plotted the ratio of half-

width P = Fold/Fr.ew versus the J-value of the lower state.

Cases where the rario is greater than one are in accord with

our previous discussion. In particular, we have (a) reduced

the value of t , hence reducing the halfwidths, and (b) we

have used the QFT theory which always yields smaller half-

widths. In Figures 1 - It we note, however, many cases where

the ratio is less than one. This is due to an extrapolatio,

procedure used on the previous AFGL tape for high-J transi-

tions. It appears the extrapolation method underestimated

halfwidths for many transitions. We expect the halfwidths on

the latest AFGL tape to certainly be more self-consistent.

On the average, the newer widths will be narrower, and it is

hoped that additional tunable laser measurements will shed

light on the actual degree of improvement.

Our calculations of 1120 - N 2 pressure shifts are

also presented in Appendix A. It is seen from these results

that the theoretical calculations for low J transitions arc

in rather good a ,reement with the experimental measurements

of Eng.

3.2 H2 C Self-broadening

We have con.,;tructed pr'ograms to calculate H]O self-

bioadened halfwidths. ;one of this work has bI-vn reportod in

detail ir, a previous Scie rti fic Report, Ref. ?6. The main

motivation for thi., research was the observations that mea-

',I 2 b
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surements of H20 self-broadened halfwidths frequently yield
values substantially higher than those calculated theoreti-

cally (see Table I, Ref. 26). We have found this to be the

case using either the QFT or ATC theoretical methods.

The observations suggest that some scattering mech-
anism, other than the usual dipole-dipole interaction, may be

important. The first such mechanisms which one might worry

about are the dipole-quadrupole and quadrupole-quadrupole in-

teractions between H20 molecules.

As discussed in Ref. 26, we have written computer

codes to calculate quadrupole moment matrix elements for H20

and other asymmetric top molecules. This calculation is far

from trivial since the quadrupole moment matrix elements of

an asymmetric top depend on two independent scalar parameters.

Our programs operate as subroutines which are attached to ex-

isting AFCL asymmetric rotor programs. The programs are

highly efficient, requiring approximately 60 sec of CPU time

to compute the stm"ngest (AKa = 0, ±2) quadrupole transitions

for J < 22. These programs have been made available to users

at AFGL.

We have utilized the calculated quadrupole moment

matrix elements in a pressure broadening program which in-

cludes dipole-dipole, dipole-quadrupole, and quadrupole-

quadrupole transitions. Unfortunately, the results of these

calculations indicate that the quadrupole mechanism does not

substantially alter the theoretical results. Typically we

find a negligible correction for low J transitions, and at

most a 10 to 15% correction for high J transitions. It there-

fore seems that either some new scattering mechanism is in-
volved, or that the usual impact theory (with the collision

cross-section calculated in the Born approximation) is inade-

quate for describing strong H 20 - 1120 collisions.
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APPENDIX A

THEORETICAL CALCULATIONS OF H 20 LINEWIDTHS

AND PRESSURE SHIFTS: COMPARISON OF THE

ANDERSON THEORY WITH QUANTUM MANY-BODY

THEORY FOR N2 AND AIR-BROADENED LINES
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THEORETICAL. CALCULIAIONS OF~ H2 L) NE~WlI)TLJS
AND PRESSURI- SHIMT: COMPARISON OF THl

ANDERSON THEORY WITH QUANTUMN MAN Y-H( )IY
THEORY FOR N2 ANI) AIR-I3ROADFENJED [INFESt

R. W. l)AviNS and It. A. 01 1

University of L.owell, Center for Atmlospheric Research. 00~ Aiken Street. I iwcll. %IA I(541. U1 S A

(Reteired 19 1 mle 9771

Ahstract-Compirisons (if ihlicreji2.il predlictions fm i wid ths iiid pie-ijic quitsl, ic .1 . t' 1.11

sitions broade ned by N or ori are presented using the Aiulersoo-Ts.,,ciu IIiite iA I () theirv ofi pic 'sire
broadening and a more71 recent form.iim derived by using quawi inin y hody icshnqUt N 'I Ixe thccrcti il
predictions are also coipared to asailtible cnilntienicIalilS iiivluting I1 Iticasietil ,,i half sc d~is
and eight measured P,.iaint line shift%. I he slatird ATC icry for iiliipoik inictia ii'. 1 ?7e:hr.,l, CJ to
yield second-order pressure shifts. It is also h.1own that a 5e.iIiransflcilliii lii fr"[ic hoeni ta n
transfer variable to the impact pairameter variable converts (lie qutnin i thcory it) a loon tti Vt) 5: iii'.ir to thc
ATC equations. The essential mocdifica~tion is ti replace the ATC i esinacwe funik lionis f(l ) IiI ris ,iew

functions g(k), 64).A, ahich. howe ver, has e a very dhilleir i shaic lit part Siar. gIL) is . i s idlo. hi
results front the %intultancoiis corisiraints of .c ic Hoiail dist ribuniii ofi selocii Cs. aiupicd Ali. ?r si

momentum And energy conservation in the collimi,io p; licses Ihle iltipliat 1111 is that liiglill non ic~ai
collisions. i.e. collisions isolving laige inelasasitic as re given nich less weight in thec qi..iniiit-ler. ved
formalism. The results ire analvied fiir both high iotl liii I tirmilstionis. iiicluding tielt~ lii' ~or of thne
Anomalously narrow lines neasured biy Eug aind othets i high 1.i th ttie i'retial d1 pnclcn,,: of such
trartsitions on the paranieter b.,, used in the iCirInc rA 11a11t1 i'tIsif lteocdi.t and K~qian. I ired
coioi sons are mnade for individual Ic s l slii . and11 lile Iie penii iii dc pe itde,is . the hlif %.idi h

Some specific suggesio~ns for additioinal exrerinieni.il studies ,me .Iso- 0ttCiel1

1. INrl(omilc IION

THE ABSORPrioN of infrared radiation by water vapor in the atmosphelire is of gre.il interest stnce
it plays a prominent role in determining atmospheric tratisinissit ito solar or laiser radiation,
and the heat balance of the lower atmosphere."i'

The absorption of radiation near a line center requires knowledge of tile line strength . and
the collision-broadened half wvidth y. In the case of water vapor, %cry few accurate measure-
ments of half widths wvere available for compaisol with Iteoretical calculiltis until the early
1960s. With the improvemtent in grating 'ipecirotnciis. and the adsent of Itinalilt- lisers for i r.
spectroscopy, a larger data base'2 " is niow avai~lable rot sltud . ()ie (if the ittire interi:stiit'
recent advances has been the application oif titnahle litsers for acutrate determitnattions of
collision-induced pressure shifts~i~ 4  Although shift ttleasuienitilts for wailer vatior arc still
sparse, it may be anticipated [hai this will be ati area of somhe coritung interest. parlicukhrly
because it furnishes a diagnostic tool forl analyiiig theoireticail cailculations.

The purpose of th: naper is ito make spociftc comparilsuns if Iwo leIxretical methods with
available experimental measuremntis of HA4) widths atnd shifts futr thle Case of N2 (or air)
broadening. The earliest calculations""7 of 1-1044, half widthis were carried oil' by Benedict
and Kaplan (BK) using the Anderkson-Tsao-Cunnutte AlIVl theoty of ptessitre btoade1ing.iS
" Considering that only one accurate mcasrtremetit' wvas availibhle at tile tinme their work was
carried out, thle theoretical results, with one notable exception, have stood up rermarkably well.

In a comprehensive review artiLC on mtcrowave pressutre broadening. lthRlIIAUStiti has
made detailed comparisons of predictions from the Anderson Ilieo: with experinienlal results.
In the case of waler vapor he finds the agreement less thaiti sattsfactoiry. llowuver. his
indictment of the theory appears to rest primarily on the fotllowingt: (at 11wx theoretical half
widths are substantially smaller than those observed by S.D .ttuS0s and (iG sik iilsi and (b) the
value of the N, quadrupole mnomenrt, Q,=2.46 x 10 'chici

2 whitch was uised it HI K to lit the,
microwave measurement of llitt and Au iti.'-' is, muth smialler thati 111.i1 obtained fromt
other experimental determinations.

tThis work was surportect by the Air Ilorke Geophys:. s I tl ,iaitm, . lcvti . .Isi1i It-. under Cituct No.
F19628-77-C-OO53 with the University iif Lowell.
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Concerning both tof tht, pe~oit,,, pial f Iie dis, rcp.,ncs is de tic Itin ciror I'ls n.: 14K ,
in correcting the Ilecker and Autkr ineasiji e mnn from air ito N h roadeing 1 b;,, erio it

beea discussed Iln later publication""' b5 flic :iithors, In whkh thcv slgpgest 11h,1 the fcsiilts 1
Ref. (17) he take i s sad fi i .i-, s% hie esutis for N.-roadenirig sholdd he o-taiineh!!,
increasing the air %hidtlis hi, appro\ 12'; picsent Anderison thcor\ c111ii'isiJi-oct
that one needs Q, I0 M )k 10 ,-esu m2 ltit ic N.) to) fit the Becker anld .-~iter line FhiN is

Ii excellent agreenient with the -cN ,ivailte S .ilui. (),1 014 -I l ~oit ,nded I-%

Si'1ittN anid S iiLHNN" Sec:ondli, , the i csil, of Saiidcrsoui ;iiid (is rg'n. for t-oth N, aind
self-broadening. appe.; it) he anioinmiloists high i.,inpaicito aill oItfier d:c.iiclers*hlrh~
no new results appear tit has i been i epoi ted for preciset, thle tri "i n shith !ntue sudicd

Comparisoni of the c or tcic cd lh:ei c nd Kaplan1 cAiiUOI olitis s th ,1SibecUtl

maeasuremients seems, it) intitice tot It, J traii atitins, thti thle prcciiois0h for haif A dth lon
the average) tend to be smnaller thani hit oliibered %aoc biies Js: fev pcr cent Sotie. of Ni-
discrepancy could undoubtedly tic remioved by platcingz leo weight oin thle. 1ii1Ai O'ifClsC

to calibrate the theory. Firthet more. [tic tire recet-n high resoliit io tunable Lise, rne..surc-
mens 11 "" generally appear Ito lead lt narilisser lie width,. than those ohtained using gi~
spectrometer,., for which sontewat iinceio tii -lit width orrc- tions ice frequents required

The "notabte eksception" referr'- it) pe isli, concert,, the discrecpaticN betssceen the 14K

half widths for higti J transitttuis (I I ; and siibseiuent tunable laser ineasurements ior such
lines. As an example, the v', hand transition 15. (1. IS - 16, 1, 16, which his been extensiel-

studied experimientally, '' 4 exhibits, iu meaurcif tN.-hroadrned) half %& idth of O.0J72 cm '.atm
at T 300'K. [he B K cak ulated value is (t 032 cm /Jatii, too Laire ' a factor of 4.4.

The origin of the H K restilt is e..isy t) i lticidaitce hif wkidth is, gii en by -y i nr12:T i v.

where c is the velocitN of light, v nicin relut se thei tal ekicil y, it pertuf her de 'siktl ,nC

atmosphere pressure and temiperature 7. aind ois the olliiou cross seit.Fir the hue-h J
transitions, where the long-range dipole--qouadruipole interLwtion hecoimes sse~uk (the I-Oliis
are very non-resonant), thie cross section is; dominated by short- i: repitlsis interuic tie s
which are approximated hy classical haird sphere sc~iotritg according to o-1-f, Here 14Ks
take b_., to represent ess entiall! the mininiuni "phivskully hclievabhc- \,tile of tile cutl-off f,,
the long-range dipole-quadrupole interaction. [-or 11IA0-N, IlK choose h_,, 3._A. whic:h us

close to the kinetic-theory collision dtiamieter, 3.14 A. ws deternied"4 from P-V-T mn:usurc-
ments on H20-N2 mixtures. [his immediately victil y =0.032 cm -'I/iitfl for T1 3i0oiK.

'the experimental results seem to indicate that lii ellectivo %due of h.,for high J
transitions niust be substantially smaller thain the ItK value. ice. the,., sugges t ,, .5 A. The
alternative (or perhaps equtivalent) explanation would ipieuur ito he triat the true -potentiil- at
short separations is, rather mushy. We usc the word "potential"' here gua.rdedly --incc its*,,,~
that the interac tion at ''cry closc distances cannot be rigorously formulated i:. eruns of *tn

interaction bet wen rniitecules".
That the eflctise itlue oif ,, for high) J transitions might lie siih,,,antialls lkss, than the

kinetic eullision diamteter is not totally utreasonable bcause the determininon of the kifleite
diamneit is hei sweighted by coitritu ns fi oi low J (hIgh, occupied) states an~d it
therefore ont.iins little informuation concerning high J citttisions for wshich .a peomeitric
hard sphere dio:in~-! I- more appropriaite.

In . etof these,, considerations. otte tii:ht attenip ito improtse agreemnt %lsth expertinier.
hy takiigi h,, - L5 A as an empirical paramecter indtltluii usinig it itl .ulbsequuent cauc:ilations. If
one does this ti the Lott1e-s of standard A I C thei y, one find,. that thle caciiutated widith :it high
J is still lt) large by a factor of abot t1.4, tile ito Ihe conitnItbui io r otf the dipole -q iwdru role
interaction 1 tile COllisiut i-ross sectio. Ill fIc', tetltiie 1,-O Ifmiil di-termirinii !he Al C
cut-otl paranueler. li,1 , by the self cutt;uirued Andeisuut precripition S (,) I otc :illt! ' tilmt(

the half width saturates (becottics iu.depeuiltc lit of 1) it a a Il ol'0iOtt)ciili Ltill SIICtec 0h0
high J transit ioius arc associated with icr,, nun-resinaunr thlie-qoiir it pole collisions., thle abois
difficulty suggests that the AI( resonminLe functions flk), F-~k) Mie k I 2 rib A lir deeu\

In thlis aprweshl ompa [ioc M Ck theory lor withs, itA stifl, iti thc hors-'



Although the theory developed fin I was dtci vLd liinto graphica~l niall 1i1 d i itIlic. the(
differences with the Anderson theory are of aI ioi c mundan; le flatoic. In pailtol ii ~it) the ii, cI
of analysis carried out in I bot h theofics coIrres pon til to citu rb~ilion dev~elo picii to5'&'a
order in the intermolecul ar Int eraction. Furt hcriiioi e although thle t1CM lIn 'I it t pnd i I al

complete quantun-mec han ic aI treartenlt, ni lg t he fac t that ii '(cc olc' mct %e .. c'.

quantum corrections can he expected ito hie smnall. Also, fill caises wherie the lowest oiders':I
correction% can be ignored in (he many-body treatment fcori'espoiiding to 0t',,~ tin the
ATC formalism I. that the basic results derived in I can he ,'hilil inttL1e 11101C N itili, lisinlg
Fermi's -Golden Rule" for second-order transition prilbahilitL'.

For practical purposes, the main difference,, bctwceii the theory of I andit1 wl A IC aippro ..c h
akre ats fol laws: (a) the treatment in I rigorously ccivcI~s11 ien t 111 d ii tv (1 (tiec koll iIt' f
proces,_- 4in the AT( approach both [the angatiLir 'leliclim ion d change ill kinltiL c(i ~ f thle
colliding mnoleetife!, are igno red), and (b) the treat intlit in I intcItudes :I lt(it /l~ittan lciagc o er
the initial trap .!idiional slttes ( ATC %imUply use tile mean re l:tlj c t he rmal ye I 'cit ). :'It hough file
treA rment of points (a). (b) in the AT( fortml ism0 is 1 sill tIy onsidered illtich a ,ictuate (the
justifii.,ion is, far from clear for collision% close to the hard %phere liiit (wheae relalively kirg-
anguiaar deflection% may occur), and/or for collisions involsing large changes in ilticintal cnrici
(large inelastic it ies), where the concomitant change in kinetic energies may al-,o be : p,)reciahle.
As will be outlined briefly below, one immediate conusequtence of tile sitmultaneouis cotnstraints

of energy and momentum conservation, coupled with a lloltltnann dustibut ion of ',Locitcs. is
that off-resonance collisions decay as ai G -aussian. 'I his is at ntach more rapid decay thanr obtaiins
from the ATC formalism, and in general, the shapes of the resonlance functions in the two
approaches are quite different.

The quantum theory developed in I is made tractable' throutgh the us~e of the Npitfial loiuricr
transform of the multipole interactitons. Hlencefortha, we shall refer ft the ihicoity in I as- Cie
Quantum Fourier Tiransform (QF'I') treatment. In thlis method, one writes tile varilat', niilitcI-le
interactions as

V(R) j f dillV(q) cf~ (I)

where R = R - R2 is thc molecular separation, with I, R, thle Center-Ohina,', Ctooldinates. [lie
advantage of eqn (1) for a quantum treatment ik that the unperturbed wave functions governing
translational motion are plane waves having the formt I (~ e", H% 1I ~j,( c "'! '. Mainsx

elements of the operator e are then trivial to cakll ithe.
Subsequent reduction, using second-order pertuit atiiun theor 'v , lads to [Ill- estilt that thc

probability per unit titne of encountering at collision intvolvting a tfttii Change int ltterilai enerlgy

AE, and with momentum transfer byj, is proporriotla to

P(hq, AE)= f d'k, fJ d'kp(E k)p(e j,) -I 61 fl a i ti, . , L -,:i A 1-,1. 2

Here p(ek,), p(ej 2) are the Boltzmann translational functions for molectitks- 1, '- with tel

~k, 2 /2m, P,1
2 2i and similarly for ell. It should he ntoted that tile qltantity hti, svheiC i is thle

Fourier transform variable introduced in eqn (1), is piecclv thle classicil nomnini ltarn fer
in the collision process. The double integrationt itt eatn (2) ilwi o' ecarit ill tol dtrCk 1 lyisimig, 11e

method outlined in Appendix B3 of Ref. MI: however, it Is tntlith simplet to) aittiodtue I[.,
transformation to center-of-mass and relative coortlinmlts vi;k

The Jacobian of the above triollsforntat ion is Il1ilty. a.lld 111C ti. itsf t Itiliotn fa.tIt' he doutticl

integral to give

JStoi oP(hy. AE) f dlK c tt'")12")tJ IV ILIA " -4*
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where Z - Ijir\(Pn nitt)I(fih~l', j3i ., I Al --(i, i t?0 and in 11,n i'Ii/ At is the reduced
mass. Evaluation is straightforward and gi~ cs

P(hq, Ah) - V 270 11 Cspj I 21 (At .+ 2~)J in

As will he discussed furthei in Section ., the trin 112q?12,,i is generally negligible compared to
the (quantum allowed) inelasticity At-'. lThen one obtain%

P(hit, AE) V(2 i ""- (;AL 114)

i.e. the probability of a collision with inelasticity A/. is jauissian. 'I hie immtediate consequence
of the above result is that highly non-resonant coilisiis. e.g. 11.0-N, collisions for high J
levels of water vapor, are given much less weight in Ihe QF 0,--ory. In particular, we shall
show, down ito b = 1.5 A, that the QVI' theory for the transition 15, U. I5S 16, 1, 16 is very
nearly equivalent Ito 4T..I-- 0. For low J transitiolis. our resuilts leaid to essential agreement
with the Anderson theory, and this corrohorazilot is not) completely triviat in view of the ,sery
different resonance functions in the two theories.

The outline of the remainder of thie paper is is follows. Ili Section 2, we review the ATC
theory of pressure broadening arising from moltipole interactions. This is done to establish
notation and also to present the generalization of the theory to include seconld-order pres.,ure
shifts. The above generalization of the AT ll' tiry does not appe~tr to be well-known, and in
Section 2 and Appendix A we show that it essenially amounts to replacing the ATC resonance
functions f(kj. F(k) by their Hilbert traiisfornis. '[hlen, in contrast to the width calculation, tll,
line shift is given by the difference of the contributions in the initial and final radiative states.

In Section 3. we show that a scaling transformation. froim tile womnewnt~ transfer x'ariablk
hiq to the impact parameter variable /I, convm ts the OFI' theorv ito a Iorm %tr~ sinmilamr ill
structure to the ATC equations. in particular, (lhe cssential mioditic-ttior. i:s to replace the AIC
resonance functions f(k), F(k), and associa;tied Hlilbert transforms ]4l , ( . by a miodified set
of resonance functions g(k), G7(A), I_!). G(k).

In section 4, we discuss the application of the two theories ito the specific problem of N, (or
air) broadening of H20 transition,, Iciails 4f the cailciil~itions, are described and the actual
numerical results are presented in Appemndix It (sI idilis for 110 measured transitions) and
Appendix C (shifts, for eight nieasureui trisition'). I he results aire ;in.4lzed and some specific
recommendations for further experimental \itfidcs lite alsosu'>t.

2 RFVIt:W (11t A I t1 111 ' 55R i I ! 6 ~i 'I /AIIt)\
t () IN(I ULt 'tI &;Nt)FDIt R Still- tS

The half width for a iamiv i v Ianiiiomi a fa\, gi, en lhs tc .ni)

where n pcirtiirber density it one it osplicri:r'.o anid tenipclitiire 7I tin=a 23
c velocity of light, and] I, is the ncal C lative thertI1 ve be its im yen ts1* . r XT Tf~'

where it is the reduce(] miass. Also. ii eqnis) 1)(J, is mlc liolt /rt1n faclt for pcriturbcr sta :c
J2.

For simplicity in the treatment whlich fidbows. we shall ton, I 1,r the caise \khere *thL ATC
term S2(I?,_ j - 0. For the case oIf part jemlar interes: in this paper. i e. 11,0-N,2. thks results
because the diagonal matrix elements of the (pcrmnanent? dipole moment operator of HPt..
vanish. Also, independently of the pal ticular case,. it mna' Ke rwcomokusl shown that the
second-order treatment oif S.(ht ,, toiilribtes notiliv toI ih preslire shift. This i% inl

agreement with the conclusion reached iii Rcf. t1). 1 e. that thc lowest-order sCitcx corrections
in the 01.1 theory make no contrihut: 'in it) the sih
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For tr'p' the ATC theory yield%

or

with

'(P ) h ~ :(ill ifi'ol )I-] (~k, 4
V1

In the above equations, we have denoted various reduced maitrlil elenient or [fhe dipole or
quadrupole moment operators, and the indices, n - 4. 6. 8 tcprce filte dipole- dipole. dipole-
quadrupole. and quadrupolc-quuilrupole cases, respcctMxev. *]hle flitIndions 111), F(A) ;Irv
well-known resonance funetuois discussed and tabtilatil by FtSAO md~k C('i iii. .".. and

k, F'.h Ij F" F) j, IS.MX

where the energies are in units cni , nd similar formulas :Ippli, t k,, k,, It we use Owe

Tsao-Curnutte deinition of the quadrupole mtorijerit iciduced imla. ix clemimit. the onmrical
coefficients c. are given by

c= (419) (d-d case), (4145) (d (I cxa. t I/~4 q-

It should be noted that the definition (if fiedict aioi Kaplan foi the tiliiip, .-* momientce
with the Tsao and C urnut t definiion. h ut tis deliiit ion IN t I it e thle v it I 1"ed I- N.It N Si wm.
BUCINGHAM.'Ih STOGtmRY and StinamYN,'"' ;kd tile dclitilil e11it,ett 111 141. 11). I-inalt. tho

above equations assume use of Anderson's "apprommiaton nuimber twoi fl rot Icii inaitio- o
the minimum impact parameter , i C. b ,; to he deitermined ;IN the solt i i of iIII 1 it

p equationi

We turn next to pressure shirts in the Andetson time 'i, Ili thet oi iti A i I lrnitiLition. a

first-order shift contribution is calcuklted, bti tilt, svt oml *rdci -hiii It clniii tcd throtth lmi

F. t~~Me statement foltlowing eqn tIst 17) in tRef (26) conliiiNr . I i .ptigiok ii ri mrd Q4 j tii ,I

For a chritge dosiritittion piniwssing al ;,i,. I:') If %IJitt, 1.1 'l Iit'i ri, v 11wi~ .kC 'I:1ii. isI'v ,I

BIRMIPAUM.
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approximation which neglects non Lcoii~Iitivity of certain quantum inechainie1d operators. A%
pointed out in 1, the first-order %hift tInc it) intilpole interactions rigorously vaniiihes. Althowih
ecffective" interactions such its the induiction and dispersion force% can contribute in first ordei.

it is well-known""~ that these forces are ac:tually approximiations to second-order (or hi,.hei-
order) interaction%.

A generalitaoin of the Al( theoiy to include second~-order pressutre shifts has been deii ed
by HIFRMAN' ") for the %pec i case of induct ion -dispersion forces jfoi the intcract~on o1 li(1.
with inert gas molecules). Ini Appendix A, wc derive the general fornmulas for sccond-ordef
shifts using Aiiderson'% original forinalii. Rather similar formal expressions can also b~e
obtained a-% limiting cases front the theo~ry developed b\ Muziim' and B;;s.'" and a related
theory recently gisCP by M-IiRUIkA and l~x;us. "' We should also mention. in this connection.
that the theory of Murphy and Bloggs is similar to the QFH' theory in that a Iloltimann average
over the initial translational sttsis included. However. con iutat ionally. when used in
conjunction with the classical path maethod, it appears ito he inure cumbersome, since the double
integral over velocity and impact paraimetcr mullst be performed numerically in the Murphy an.d
Bogg% formalism.

The results for second-otder shifts from the Alt' theory can be expressed in a form sets
stmilar to the width formula-,. The shift (cm 'imton is given by

dv (27r: - J,)(.) 7 f

where

irb,2 S~(4 ,l.I 12bi

with

I01fIY)Ii)I(JA ,110 2 )12 F( 'NO 0111

and k,, k,,,, it, k,,, have the %ame definitions ais given previousls.
In eqn (13). fAk) and FtA) are simply the Hlilbeit tinsforinQ '' of ft A) and F~k I. respec-

tively, i.e.

Pak ) ir 1t1) k

It is also to be understood in eqIn ( 14) that hA',, I-'(k) are to be taken as even functions of V'.j. i.e. ftk') = f(Jk'). and similarly for MCI).
Some useful formulas% connecting the variousN fiinctions should also he notcd. viz.
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I heorc.'d I ic al. cu1,iiwn% of 11j( )I h ii d mlh ir IcN,ire 111(1IjO

FM- 2V-k (0.h)

Equations (15) are valid for the case k >0. For k - 0, F'1) -i(Jk) while lIA' P1V). ic.

1(k), F(k) are to be taken as even functions of k. while (k) and Ii'k) ae tio he taken as odd
functions of k. That cqn (ISb) is consistent with eqins (14a. (141 111d (I al can te ,.cen as
follows. We take the derivative of eqn (I a) and obtain

kF'(k) - (nt - 2)F(k) 2f'(k). (6

Next, we take the Hilbert transform of both sides of this equation, which gives

Pr k'(k')d' (n 2)(k -21(k). (17)

In the numerator of the left-hand-side, we write k' (' -k/) 4- k. This gives
I Pr(r F'(k')dk'

IF(-)- F(- -)I k f LW--- (n -2)-'(k)-2f(k). IX)
IT irj k--_k

The first term on the left-hand-side vanishes, and. by a well-known theorem for Hilbcrt

transforms,"" the second term equals kPF(k), where /"k) =(dldk)F(k), which gives

kP(k) (n - 2)f(k)- 21(k ). (19)

Then. by analogy with eqn (16), and noting that P(-) -- 0, we immediately obtain eqn (15' .
The ATC resonance functions 1(k). F~k) are qsificieunly complicated that it apjcars ito he

necessary to obtain their Hilbert transforms numerically. Such results for the dipole-quadrup,e
case are presented in Section 4. Since tle Hilbert transforms arc odd, they vanish at k = 0. For
large k. one can easily see that they must have the asy'npttic Ican

f(k)= -. ,lk (k- (20a

' k)-3,/k ((-2). t20h

where Mr, = (lln)f.f(k)dk. 3 = (/0r)._ F(k)dk. From eqn (19) ,ne then obtains the result

f~l -I "(21)

which is a useful relation for checking the nmerical calculations.
One final point to note is that we have not included the shift contriutlion in the dfer-

mination of bo. In Herman's paper."' a cut-off precriplion is recommended which ippears to
be essentially equivalent to

s',j,(h0) + s,"','] i .l

We will not use this prescription for the following reasons% a) the theoretical litvtitic.'tion is not
completely obvious. (b) we want to keep the corrcspondcoce with the careier c: It ulations of IlK
as straightforward as possible. Mc) the shift contribution i, gencilv i small iticompared to theIwidth contribution, so. for most cses, one cpec, is itlhcr sntall coirections f the shift were
included in the determination of h,,.

The formulas in this section proside a complete d-NLrip11in Of the Al Il theory of widths
and shifts, except for the inlroduction of the pailjithii I ....... ciiplocd in ihit c.rlier calcuia~io
of BK. This minimum "physically hclies.,ie" t, .!,ic o, the itit-ofl is iiseid w follows if h,., It,,
[as determined hy eqn (lOll use h,, in the c:,lt ai.i ion. oilier ,s i sc b,,.... in plIce of h,,. For the

H.O-N2 system, the dependence of the results t ic h,,Kc o, f I/, i i. 'lt 1.),l i Section 4
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4In Ref. (I). the OFU theoly of sckonld oruie plessure shifts was. analyied III dt.11sl [of thle
case where the lowest-order venus to c tiiums s'anwh 1cta responding to 0~ "i lil.. 1 t!
ATC formalisml, the hineshape fainctutui ip -#p) call lhe written a%

f~(/~~t ~- I;~I~& w)",t~ l* )L

Here we are using the notation of Ref 0I) We will indicate the corrcsponden, e vA kh the more
familiar ATC flotation presenily. In 01111r 1t) aul;kc such a (LorrSP0oaadenee. it I, nie% esarY t.s

convenient) to ignore the inhaanaaugccoUN hitakldeuag Implied h equ (221, and to repLie the
lineshape function by tile simple I orcnt/ian

t, A hw), I l"

where

* F(FA4 Il".ave. (24)

Here (O)iave f d'kp(ek")O implies ani average over translational states of the absuodinl!
molecule, with p(ce*) the Boltzmann factor. With the above approx.inialions. I' is the half width
of the I orcntzian and - A is the shift. The object A is prek iselv thle q~uantity calculated 'r
molt ipole intter actIions in Ref. (1), Since thle ial aivi:d aImaagi nary parts of the sel f-cnergy (A,1 and
rk respectively) are connected by Kraniers-Kionig relations, it is e;isy to see that thle onk
essential modification necessary to obtain i' is the replacement of thie principal '-dlue
denominators in equation., suich as (5.1(M), (S. 19), (13. 1) of Ref. (1) by i-b (energy denomina ra.
Thus for example, eqn (5.A9 oif I gets replaced iii the, width calculatiion hs ',he resonance
function

F q A 4 j ~ -( i~ a ) 1 2 / 'e x p [-- 3rn E '2 2 Ia, P j . - S F - 1 1

Of lN/(2~M ~/7r) (0 q'S -'i

I "' ( I: ( expr 1-21 ( -,
2 i hIq hsq it

The above resuilt is csSe'tti~AllY Identical to eqn b1 of thc prc~crlt .aper. As mlniollod 11n the
Introduction, the term h~q' 22,. involving tile square of thie niornentam transfer, is usu:L11%
negligible LomparJd to the inelasticity AF (tp"' -, 4,1 -.t ih +rgmen fvr this is,
the following. Ira the ATC theory the niultipoli: inlieractions become di% ci ecnt as h - It arOi nifIt
be cut off at sonme nirninitui impact paameter 1) ,,.Similarly, in the QlA dprac.ib
multipole interactions become divergent at large q. Since q andi 1' form es'.entiallv a Fouhri
pair, one must cut-oil the multipole interactions roughly according to q,,, - lb,, Thus

(Aq22, ~. ,nann I .aing, h,,, 3 AII= .83 x 1t 0 grains ats the r.,duccd mass o
H20-N2, and converting the energy ito com I, yields 0hqIs t. 5.2 cm I. This valuec is totalh%
negligible compared to typical (quantum altomedt in lasticitics. A F,, for 11.0 -N. collisic-ns. it
might he noted, if the termi f( 2 22) ik ictajated ini eqn (271, that thle resultiali! theory for' Widths

is formally convergent at lUtgc q (thle calciasIation of shifts still leads to a hil-h q disc rg-. cut
Ilowever. this, convergence is spurious since it occturs at[ valuies of q wherc the roaaltip.'le
interaction is totally unphysical.

From the above argument, we henric f it replace eql 1(27) hiy tilie I.au ss ian fittula

~I( /it 2 O
2qt1; 1, ep h



'thefireical cilulations of 1t h i; tdik an ine- %hx t lift%

-4Similarly, if we ignore (h'q'i1ni) in comparison it) uP , in cilit (5.22) tof 1, then cqn is.20). (5.21),
of I lead to the following resonance function for the auillioii of shifts-

The functions r,(AE4, and yq(.AE,,.) are %iniply ililberi paiis, in) paitielirf

P'r FJ I I) it F

Next one has to integrate the contribution of these functions over .In View Of CLIN (5.11) Of
1. the shift calculation involves

-8f dqq" 2 c ~* yq(AhA. 3)

Similarly, for the linewidth one needs

V A" - )I dqq" ge q" ,,(A~j ,. t 12a)

The meaning of the index or is the same a% iii Section 2. i.e. n -- 4. 6. 8 for iOic dipole--dirole.
dipole-quad. and quad.-quad. cases respectively.

In eqns (31b) and (32b) we have also retained the phienomnoiilogical cons ergence faioi
e- " which was introduced in 1, where r, b_,,. We will now eliminate this pacr.nicicr in fat, or
of a cut-off procedure more closely related to Anderson's method. To do this, we introduce the
scaling transformation

a/.

where, at this point, a is5 an arbitrary (dimensionlesN) constant. an~d the lenjgth h' hee orins the
new variable of integration. It is also useful ito eliminate j0 iii the pres ions, equl tioins by usini'

where v is the mean relative thermal velocity. This g~ives,, with At-" ,. "

(,'/ 1)a. 2f b eb 2,jh 4 ~~:~j

/ 3 2 \ 2 F" hdl C A - ' -1 ( j'i t)

3 2 ' e * ' " I' e X p - 4 1.~ ,

if the factor e -2..',Jb were not present, then, as In thec Andei son theolry, the above
expressions are divergent at the lower limit to -,It Ilic e hoo',e ito drop the phenonictiologi-I cal convergence factor, and to replace he lower iiii 'mply by li,., wlici c. with sonimc
appropriate choice of (fie sealingl piari meter ft. we Icl,'Ar it h., if'. .11 efeti U iniil 11111i
parameter. to be determined by Anderston's %elf kiimtwiined kt till piotedmci. 1 liii%. ini citn,. _'St

tA simple derivation of Ihc Iflili Ii,,nstiii uta ;i(,,,I i.,ri r., ht: foid iii Icr 02I. .. 1-~ PO~ Oil
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and (36). we let

Finally, it is clear that the above procedtre only deincs an approxinlation io the long-range
contribution to the cross section, a, (. In the spirit of the Anderson cut-off method, this is to he
augmented by a short-range contribution. it r lrh.". corresponding to clissical hard sphere
scattering.

The remainder of the reduction of the )FI' theory to A'IC form is now conlphicly
straightforward and the details will not le presented here. Some helpful correspondence
between the notation in the two theorics is as fllows:

Ref. (I)-. A'I Notation

i, -f

h ' -.Ji

hi -, i' or '

The following relation involving reduced matrix elements is also useful in the reduction:

and it should he iememhered that the dcliniion of quadrupole moment emplo.%ed in Ref. (I ,i
one-half the BK definition.

The final result of this analysis is that the QFT theory can bc generated from th ATC
equations with the following simple replacements of numerical constants and resonance
functions:

AlF("--.OI

8 2
I c;/(/ -, c, * a" 2.g,(/)

7r

(';l"k) , ;, - 'G (k)

8
-

IT

"IT

In the above correspondence, the contants (',. for n 4, 6. 8 were previousy gisen in cqn 9.
Using the BK definition of quadrupole moment, the corresponding coerlbicnts in the QF'T
theory are

27 (d-d case),. I )00 (,lq case), 1I/ 163(1)0 q-q case). (4t1

The resonance functions 0,,(k). (;( in the QV11 Ihcory are given 11,

(k) - 2V" :,k') (k o0. (42

L! ' 414



Theoric alxi caitcialations ofI It 4 Ilii dth%~ anrd 11re -mii shll 10

The functions i(k), 61(k) are simply the Hilbert transfoiins of g(k). ((A and are giseni
explicitly by

j(k) exp - , cI edt. k43)

(1(k) = 2k" 2 , k'd& A'1) (k ) (-44)

As in the ATC formalism. g(k), G1(k) are to be taken a% even functions oif A. \,hitle 14(11. (k)
are odd. It should be noted thati eqn (42). (44) are completely anlogstor0 Ilii LS(Ia) .. id ( t5h)
of Section 2.

4. A PPLI CA MION OF THE I; I ORI F tS 10 1t,() [1 Rt 0 A Di VN I.) Ii~ YN

The original calculations of Benedict and Kaplan were catrried out Ior pure rotational
transitions and ignoring vibrational-rotational coupling. Wc have aitimpted sie refinemnict of
the calculations by utilizing programs developed at Air Force teopliys *cs l.41hrrataory which

treat the vibrational-rotational coupling in 11,0) Via thle WAIMIN' ''' asymmeticric rotor Ham il-
tonian. In the case of the ground and P2i vibrational states, the present calculations are bised on

the best available constants for the Watson Hanmiltonian as deteurmined by aI least-squares fit. In

the case of transitions involving the P,, v3 and 2r'2 states. becaiise of the existence of accidental

degeneracies between these states, we have %imply performed calculations using Prouind-state

energy levels and eigenivectors. It is doubtful that this approxiimation introduces large errors in

the calculations of half-widths, however, it is certainly inadeqrtatc for thle calcuilation of
pressure shifts. On the other hand, at present only j,2 experimental shifts are "% ailahle for
analysis.

In our Anderson theory calculations, we have proceeded as IlK did 11w choosing Q., .t
nitrogen quadrupole moment, to force a fit ito the S, 2, 3-6, 1, 6 [microwave line sititd bv

BECKERt and AUTLFJ(.12' The experimental half-width is 0.tt87 cm 'faini at 318X'K in air. F-ront Cie

tunable laser measurements in Ref. (14) for low J transitions, one infers an ail to N, correctiuni

of yN = 1. 045 -y.,, and applied to the Becker and Autler result yields y,2 t0.0%96t cm 'latill.
When the difference in temperatures is taken into account, this is inl good agrecment with the

result obtained by ILa E and If(tt..N' 'for the samte transit ion I y,. 0, 104 cm n t'/at at 3001)0

For the H20 (ground state) permanent dipole mom'tent ill, we basec taken tile value" J, -

1.85 x 10"s-m which is about 1% smaller tblan the HlK choice. We then obtint a fit to the

Becker and Autler line if Q? 3(0 tO 10 2esti-cin-. As mentio'ned in the Intiodttctiotn. this is in

excellent agreement with the "best available" value.,~ 3.04 x 10 2"CSt-L Ill' -as recoinnie:.cd
by SToGityN and STUR'N." Ii

In the notation introduced by BlK. eqn (7.0 for thle dlipole-quadrupole c,,se inti tie wrtricn as,

Mj~, i')Q(J.i )f iAd) i tv n ~fQ(J,. J o] 4, 1). 15

wheret

145 \ht, ( , (o

In the above notat ion. the corresponding forinulas 171). 0.1~a) and It IIN for S./,,.*i'0 jnd

Sib are obvious.

Turning now to the QFT theory, the correspoindence given in eqn (3',) for the dipole-.1 ~~~~~~quadrupole case ts equivalent to , -*i'(t)c I

tFqualen 14jat in Rtef t 171 orinim a1 Illpr.,i-d~.
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where A;,0  AIVI a4/(I lVff 1 anti obViouis simila~r replacements foi the other resonaince
functions.

In applying the QFI' theory, one is iiow confronted with the piohkcm that thle scaling
parameter a, which wits introduced in order to obtain a cut-off procedure similar Ito Andcrsorgs.
is not given a priori. and therefore a ends tip as ani additional undeterminedt quantity. Two
reasonable methods for fixing a are given below.

We note from eqns (41) andi (47) that the two theories may bc made identical for purely
resonant collision (A ac AE-U) by choosing

a ( 7r )"4 =2.36749. (48)

A plot of the various d ipole--quad ru pole resonance functions for this choice of a it, illustrated in
Fig. 1. It is obvious from Fig. I that the above choice of a will require a much larger value of
Q2 in order to fit the Becker and Antler tine. Again taking d, = 1.85 Debye ais the H20 dipole
moment, we obtain at fit if Q2 =4.61 X 10- 26 esti-cm'. This valuec seems far too high, however, we
will retain it for purposes of comparison. We shall refer to the results derived from the above
choice of parameters as QVI' 1.

Is 1.0 2.0 3.0 4.0 Is 1.0 2.0 3.0 4.

.0 ff) (k Ff1' 5

.84-

.2 \q(k) ('

0 n

-. 2 -jkG~ld

-.4 ..... ..

-. 8 (k) F1:)

.2

k~ 20 4.0 60 8.0 It'- 2 0 40 6.0 8.0
(k'-2fIT b^, 7\ ~I c (,OTn)

4  
2. 36;-9

Fig. I Comuparison of AltC re~iinanlc fuhlct,'i% /(4) bi. til. ilwthir 1tilhcri tr,i,~fri% fiL I. lL . with
the QFT1 resonance functions, g(L i. (1il . ,,d .%iaItsl Htilbert transfirims /IL) G.(l I The 1lot i' for the
case a (1100)" 2,36749. %%hi~h rnakes the theric. oienical for oo-tcwm,,,lc IL -.10) c, Iisiof,. Note
that the sk-sc,,Ic foi the Hitlicrt tr.snsf,.rm. 11 1%11 (Il at!~ for OW. 1CSI1,11flcl kt lse C (nc'OlIf

functions are even function% of A. tc her 1r~iinfis a.jre odd functions of k.

A second method of proceeding is to choose the *'best avail-be" value.'23 Q.,
- 3.04 x 10-2 esu-cm2. and then to fix a fromt the calibration line. This yields C; = 2.79. which is

18% higher than the previoos choice. The resuilts deiived from this second set of parameters
will be denoted by QFf' 11.

Our final results indicate that the difretence between line widtths ats calculated usin- lte two
sets of paramne ter ssi neer vet- y great. 'I lIt i 11.1,, thIe posit is u itmpl1 icaItion that lite c alluhit ed
widths are faitIy insens itive its the coi ohini U tChIo -ce fo t (Q.) I otie r a ro aot.le range.
however, it also implies t hat Q. cannit t h ack intticl dlerit- i tie i i tie r e llittt 1 . j\s

enpre~~~~~~~~siiins ~ ~ ~ ~ ~ lt frM t i.II''uo ir tuuI iitpi nt a tucvcr. %t.. lis: i ti,lw lwnh I(, the \jjrsi)n cut-off
procediure is nitle vIA ci~iu (37). w hets N ,,u to Is ini,i w itt is in fcl i v c nitiltluiif rnr-li t p.aranictcr. the resujlts ate ntu

longier unitepentent of It
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pointed out in the Introduction, it ippears that tile overall rin% error betwecen thety and
experinment at low J (for both the ATC and OFF theories) could be reduced by placing
somewhat less weight onl the Biecker and Atitler liansilion. Horwever, fin this paiper we mie more
interested in comnparing trenrds thant obt ai ii iir a ties! -fit ii the as ai rle d~ia The llt er
procedure would surely require great selctivity. owing to the dill rene aiid accuracy of the
experimental procedute% used Io gather thle dat.

To complete the discussion of the ecilculaitiiinA prokcdures, we make the follow.%ing remnarks.
Since most of the experimental results are coioied toi the temnperature ransge 295-1110'K. we
have performed all calculations at 297'K. We have ;lso carrief out thle calcfltion(S Nor purte N,.
using 30 occupied N., levels, and the rotational constalit for N, wits chosen ;is 2.0c '. It
should also be noted that mainy of the qtuoted expeririient:it results aie for ,ir rather than pure
nitrogen. We have not attempted to corre,-' for thil,, however. fromn Ref. ) 14). onte expects

nitrogen-broadened widths to be approx. 10t4% higrei fur low JItransitioms. lor %cry high J, this
is probably no longer true since the scattering c~ross \ctoli is dornliflaed by (T1 45 7r,?_
Finally, in the case of the QII' calculations. if ynma he imited frin eqns (40 -(44) that the
resonance functions G( k . (), (A , 6(k) aie foimims only of the paraici

K -- Ala - 2mbwA I/ i .19

This results in at considerable computational sinipliticatioin because (the resoniance functions call

be tabulated once and for all ats at function of K, and then used according~ to eqn 049). 'The
remaining dependence on a can be lumped itito the coupling constant A;)) as, indicated in eqn
(47).

The results of our calculations for half-widts, ;ire pi esenitd in Appendix Bi where we ha' e

divided the transitions into three distinct groups, Groump ItI lines with ntegbigibkc sensitivity lo
letting bn, <3.2tk. Group 112 lines with sonlc weak sciisitivity ito t11e rcduction of h,.a nd
Group B3 lines which are strongly dependent uin the choice of b'

For the low and intermiediate J lines, listed in (irotip IIIl we niote that the 'V 41iand AlL(
calculations lead to substantial agreemnent, the general trend beoing that thle QVI' widths are
smaller than the ATC widths, with niaxinruin diflereires of order 51/0. We also note that the
QFT I results are consistently smaller than the QVI' If results,, however. the differenices are
typically of order 1%. Therefore, the distinction between QEF I and QVT' 11 will not be
belabored in the discussion which follows. Although the overall comparison of time theoretical
and experimental results is not completely satisfactory, we note that Most of the la:r1e
discrepancies are associated with the mecasuremnrts of Refs. (8) and (9), where the obse:s ed
widths are consistently high COnrlpired ito the theoretical values. It shotild be noted that the

results in Ref. (9) are for air-hroadecning, while the calculated widths refer to N.-brojd. ijng.
The Group B2 lines, of internmediate 1--altmes 19 :F J 13) exhibit [the ;,ne general ircrnds.

except that they show some sensitivity to the redluction of b,,, below the IlK value of 3.-'( A.
The 01-1 results exhibit the greater sensitivity, drie to the Gaussian deca * of the QFI'
resonance functions glA). GMk at large inelasticities. For these transitions, we note, if I .... is
reduced to a %alue of IS!! A. that the theoretical widths are in poor agreemlent wvith (the obsers ed
values of Ref. (9), however, they are in reasonably goiidagreeentil with thle measurements of Refs.
(15) and (1hr). Of these measurements, only one"l~ is a tunable laser observationr.

The gioup B3 lines, involving high J values. are seen to he extremtely seursitise to the choice
of b,,. In Fig 2. we present a pliot oif half -width vs Ji,,, for tie transition IS.O (15 1, 1,r 1. L-. It

*is seen, if one is willing ito, allow value li 1 1 It as small ais Ls. A, that the OFF~ theory can
account for the narrow measured width. I he At threory. on the other hind. !,;turrtcs atl a
value for the half-width of (.01(1cm 'hlin.

It seems clear that no theory siih as Anderson's (or the QFI theory as used here!, which
treats the width at- a sum of two independent coiiitiotis fromt a long ard short -range part.
and which further approxiimates the shiirt nirnge pirt hy classical hard-sphere scattet ing. c.;n

providc nmich further theoretcal understanding oif the narrow lines it hilh J. 'I he argument ikir
this is simple. In the present approaches. the scatiting cross sectioir nray be written

(r (7-. f 1 1 R Ir U1 R. (t
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result r n 7'bl,, (, k 0) is indicated by cro~scs I he experimlental rcsult 1% cul!CJ from Rcfs. 12H 14I.

where, in the case of interes her e, f, r arises from the dipole-quadrupole interation.
We Imagine that it were possible to calcu, ate r, 1 exactly or ito any required high order in

perturbation theory. Now tri H is necessarily positive or zero. 'I he best one can hope tor is Ii

an exact calculation (for high J transitions) would give er, R 0. In this c 'Ise, a *- . [he
result of such a calculation is also indicaled in Fig. 2. II is seen that the QFF result is viriually
identical to or, H 0 (maximum difference of oider 8%) down to b,,,, - l.51) A.

It appears that there are essentially two piths toward further t'ro!zres. The tirst approach is
simply to accept I? .. 1.50 a as an empirical fact, and then to use It in al! future calculations
(in place of BK', value b .... 3. 2 A). Our resi lts for the Group 13 transitions indiczate that this
should work fairly well, and thc QFt" theory appears to produce the mote satisfCtory results.
The one rather glaring exception ito this is the v', transition 13, t, I.- 12. I. 12 measured h%
-oH." Here the AT(' theory produces distinctly better agreement with experiment. However.

the fact that both the ATC and QFI' widths are too small al b.... 1 .50 A suggests that part of
the difficulty may he due to the use of ground state energies and eigenvectors in C~ie theoretical

.: calculations. It would seem that the most crutcial question is how well the theories will work
(with b.,, = A. A) for lines of inlermediate I values. As sltted previously, our present results

for such (Group H2) transitions are rather inzonclusive in this regard.
The second (ohviiusly more dificull) approach is io try t) formul ic the d,:tailcd interaction

which takes place at small inermolecular separalions Stch a theory must ;account, at least,
qualitatively, for the strongz repulsive exc:hange, interaclins w'hili occur %khen the electiron
clouds overlap, and must yield the dipole-quadi ipole interaction at lrger separations. Unless a

.potential" i) describe such elects can be formulaled semi-rigorol,!N from lirst principles, we
visualize that the result, of such a theory would largely he a reflection of whatever parameters

were initially built in to specify the interaction.A\ ,8
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A final point it he made in this conit"l i.o th1, thc l'l lll ,.I tl g lc ill clil (41. i e the
probability for a collision involving inclash kI i . %),. i (I .. 'issia 1S 1 ci v .e ei hI pIsrt ic hr ii . it

assumes only conservation of energy aiid 1 al 3o4l1./, d . It,t ma n d sliblion of Ie,).
cities. It can be applied it) any porenl ial (phtiI0I IL, Igi al OI othliw isc) f(m which ihc miiirier
transform exists. and which can he treated iii 5. o+t' id ,tidcl perlidialion lheorv. Although
both of these assumptions run into dillicully it ci close il.ctdir ,tcarations. the imphc:ation
of weak collisions for high J %talc seerms valid

The results of our cal culations of pressure ,li flS fll lil tll: 'td P I' an i ions are pr,,seilted ill
Appendix C. The theoretical calculati on (frol bot h licIqc i) hshow no relation he experi-
mental results for the two high J lines 15. I, 15 - 6, 0, 16 and 14. I. 14 -. 1 t. 15, No
explanation for this dllicult y is presenily av;olabih, althiiiti onc p sihle interpretati.n i. tht
the shift for these Iigh J Iran sitiou, cai'i bc coiic . lly calcufated withotlit treating the
short-range interactions in detail.

For the remaining low J iransitions, the QFI theory gives the correct sign of ihe shift for all
six lines, and yields numerically accurate valies fl four of thcsc ti rislilons. It is also
interesting to "interpret" the frequency shift ii terms of the individual level shifts of the lower
and upper radiative states. Such an interprelation i,, not complclel una nh ,uous sincc hr
determination of b0 is a joint property of the initi.il and final slaies i, f. [he results of such an
interpretation are shown schemtiacally in Fig. I for the three transitions 8, .. , -'9, 4. 6; t. 4,

2-+7, 5. 3 and 5, 0. 5- t. 3, 4. The resulls foi the olhc ihicc low J trainsitons,, cf Appendix C
are essentially identical to the situation depictld iu .ig 31h t Iig .. note n he fol!owk in.
results: (I) in all cases the signs of the individual level shifts are identil;, from the AF" and
QFT calculations, (2) in most cases the shift of ihc lower (gromid) sta:c lesl is fIrger than the
upper 1v 2) state shift, (3) only in the case of the S 0t, (5 SlItC is the levcl slifl ncgative. RCgi.rding
point (2), the ATC result for the transilion 8, 3. S -1), 4. 6 (, :niomialous ill tht the upper state
shift is greater than the lower state shift and this leads It l positIvce theq [icy shift.

AtC QJ r i

t o .r (C+, rn/o ,

8,3,5 -- 9,4,6 (V... .

.11044

J 6,4.2, 1. 3 r z )'I.

.0070 .00 i108

A l. . -_:t ._' , I

o (,;,4 II
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-00 H .0079

:I

Fig 1. tndisduat tncic stinis tn,r ?hric, r. L,,nd t. I,.nn I hr-~..nl t If, '1 ik 1, 1, 1 nilrIf Cdl t
[n n s, 1hs v,iml-, I' I 'dntn-qtnla, ,mc -iIdisi II ,1
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Concerning the sign of the level S i.. t is Casy it) see that the contributiion to the shift of

%late i from a collision i -~ j', J, . J 1 will be positive (nIe.itisc when A.
(21rcbO~t')(E, - Fi. i t - Ej,) is positive (negaitive). 'Ihe dependence on lte pciuilwer %tics J"
J; makes a complete analysis difficult, however, taking into account thati the roiatfional coniai
for N2 is smal. A,,, will tend ito he positive (negative) wheni (, - F1.) i% posiitiengii i We
then consider the state i 5, 0, 5) where thie theory lead% ito a negatovc level .hifl 'I his %i. i

has strong allowed dipole transition to the states P -- (4, 1. 4). (5. 1. 4). (6. 1. 4). (6. I. hi. wIth tile

dipole line strengths given, respectively, by 1)(i, i') =0.3554, o.1774. 0.0113. 0.4524. 1 lie cor-
responding energy differences arc (, - FJ) - 10M.51, - 74.11. - 323.64. -' 2.91 :in '. We note
that (, - E,-) is negative for three of these transitions, and, in particular, is negative for the
strongest transition. Although such arguments are rough, they may be useful for it quatitatitc
understanding of the level shifts.

A final quantity of interest, e.g. to meteoro logical applications, is the temperature depcndenc
of the half width. Because, to our knowledge, no accurate experimental determiination% of thi%.
dependence exist, it seemed unwarranted to undertake an extensive theoretical investigation af
this question. However, of some interest here is the comparison between the predictions Iron the
ATC and QFF approaches.

In the case of the ATC theory, it is generally found.... that at power law of the form

Y(I,)/Y(7',) U .0( I

adequately describes the temperature dependence. We have also found this to be true in the
QFIF theory, at least for low J transitions (where the choice of b,,,, plays no role). Results for
the exponent. ni. for four lines of relatively lowv J are shown below lin ['able I.- We seec f rom the
results in Table I that the two theories are fail I consistent, with iniximumn ilicrences of ordor
8%. The results at low J are also roughly consistent with an effective cross section wshic:h is

temperature independent. i.e. the prefactor tit, in eqn (5) is proporional it, (T) :. hence. .in
average effective cross section which is temperzitore independent would \ icid tit 00

At high J. e.g. the P litansition 15. U. 15 - l, 1. t16. we find at -onpficaited tempe;: ilre

dependence. whmich also depends sensitively on lte choice of b,,,.For e~arnple. if %ke choose
b. = 1.50 A for the above transition, we lind] drastic deviations from the power law of eql 05 1):
the temperature dependenct v' yt F) is much smaller than at low J. and the -.nderson theorN
leads to a positive teniperat.ue depenidenLe ickirresponding to iii heing negatise in eqn (5 1
while the QFI theory predicts a negative temperature dependence. An experimental :n-
vestigation of this question would be interesting but probably extremely diilcult due to the
narrow line width and relatively %low temperature dependenc:e (tin going from :25 to 350-K the
ATC and QFI' theories predict at change in y (if + 16 anld - I111t respectively).

In conclusion, we offer the following appeal for further experimental studies:
(a) It would be valuable to use high resolution tunable lasers Io. remeaire tinl the I, band:

some of the low J transitions studied in Refs. (8) atid (9). The Sanderson antd Clinsbcr,_

tI atc I inc.in 0 1).

AT(
Tr.,,,itior, iK I i..sa ~ll it) I ,r, II

7.2,0 *3,1,3 0.1.11 0. 6 S 0. 61, 4 0. .73

Vr *v~ de i - 1,,,0 1 .,, '2 0.2K ~l-lt

wer, (j~iv-jin o ' mKtNniin 1 ~ tiiM1
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measurement of thc 1, 1, 0 -2. 2, 1Itransition remains a% a particularly aulue ellbarrassNnient It?
the theories. For the low J transitions, we have generally found good agreement between the
results from the ATC and oir calculations. andi thewc are line% for which (lie long-range
dipole-quadrupole interaction is dominat. with ve~y weak depenldence on the choice of b.,,,-
Drastic discrepancies between theory and experiment for these line% can only iesnli frorn the
inherent uncertainty associated with the Anderson cut-oll mnehod, or possihly with the ua'e of
second-order perturbation theory to describe the scattering priwcssc%.

(b) In order to ascertain the effect of reducing b_,,, ito a value of 1.50 A. it would be useful to
make a number of high resolution measuremecnts of widths for transition% involving inter-
mediate J values, e.g. P's in the range 9: J :, 13. These lines, theoretically, will exhibit some
distinct dependence on whether one choose% b .23.20A Wte 1K valu-~. or the choice
bIt.n 1.50 A which is suggested fromt the measuremients of Frig at high J.

(c) It would be extremely useful to collect additional laser nieasulrements of H!0 pressure
shifts. This is an area where the difference between the ATC and QW11' calcotatioits can be
pronounced even at low J values. Suich measurements could help to dillicuntate the merits of
the two approaches.

If satisfactory resolutions of sorne of (lhe above uncertainties can he obtainedl, it would
appear that the theory presented here can be applied with rather good confidence ito widths of

H20-Nz over a wide range of J valtues. '[he calculation of shifts is more delic~ate, anti the
success of the present calculations appears to be limited ito tow or inteirnid&.tc J transitions.

Additional experimental results should delineate the range of validity.
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A PINI)X A

Second-order pressure .ihfts in the Anderson fional.sn
Let us egin with the integral e4quatiol for the I' itlli il it Aideron's theory

i(t) I f"". ' d. tail

where HO is the unpertulled Hamiltoian. ;and H,(i is like ollision Ilamillmii with the cla%!.ial-palh lime -dcpcden, ¢
Iteration of (All leads to the series given in eqn 149) of Andcrron\ original paper.""

l
' SimI.irly.

Iteration of equs (At) and (Al to second udrt yields

T link T i U, f- F, 1 f -•

T-' -lim T(I) 1, 4 T 1'. +A41

with

where (in Ander,on's notation)

T, d" -W i, " d J d HtH, (W'). A-

I. tf'd' ddl. , w kr Aiii

If the non-commulivity ol i,(t'). Hi,(t) in eqns WA'l and (1S) is ignorcd. ilen bty a stand,rd tik of ititcchanging ;he
names of the dummy variables of integration, one obtains the result of eqn (S51 in Aaderon's paper, i.e.

/' T, =-. P". A..9)

Now, for the calculation of the cro"s section. one require% diagonal malrix elements of 1:. From Andcrson'.- approximation
(a) one finds

(nITIn)- - .1(111,0

I T jn ' (nIHA I nW, IA (i

where i,. =i. -- '.,. w (E,. - E."/IA. If we define the Vouurier transform

U, ft (AII

then eqn (AlI1) may he written

(nT~n) I ("Ili, W..01')', (A 12)

The correct treatment of tqn (A). on the other hand. yi ld%

(niTin) ., ( J d 
al . .... e * .... "cI-.tt'Ii) ' IItt lt nit n 11 A l )

A52



-' Theoretical calculations of ',0 linewidths and pressure shifts Ii

The trick now is to introduce the inverse Fourier transforin

14(t)z I d.,,i(W c - tA14)

Making use of this in cqn (A13) gives

I =) dw. f. J- a" (n dtc- ti'CAI(n1T2In) = J Y.- f I ta (Fh aI~'f, in r'

The integration over t' yields"'

rt ir(I

The t' integration then simply gives

f de " - 21rh(w' w'. (A17)

When the integration over w' is eliminated, we obtain (with W'- W)

I(n T21n) - I f' d.( IH, (w)ln'Xn'jIt, (--w)jn) 7r(. ... ) ,,,4. (AIN)

Since H,(t) is Hermitian,

(n']l,(.-ca)[n -: (,illl.1 ln')'. (A 19)

so that

'Tzln) - Pr f d,,(nIH I u1"')F 4 n I ,If.w)n 01 (A20)

A little consideration shows that (njT2 
1
"n (niTrn)

We note that the real part of eqn (A20) is identical to Andcron'% result of eqi (AI). and this rives the usual
contribution of Sz(b),.,., to the line width. The imaginary tern in cqn (A.20) yields the ccond-order shift contrihution, and
this term is precisely the Hilbert transform of the width functio. Subsequent reduction of the cross s,.ton using the
standard ATC methods then leads directly to eqn (13a) for (

Finally, to obtain

SpI(h _ f dbS,(). (A21)

we require integrals of the form

where k, =bAw,/.. Since

- Pr P ( (I Vd• ,, A' A,"

we need

We let k - bo'lv where w' is the variable of integration, and then reverse the otdcrs of integration. lIts Vi i'

bV-
I Pr f .d-- h , (A24)= ,~i ....c- , 2,,h,.. .. ~f~wiI

Next. we let A = Avi' and ohtain

. Pr f dt,. , A . /I t J, i5 , ' A,, 2 
. ,. flt l

where As= - .'Iv. From eqn (I 5a). this is just

I I'r " .1.,, ' ,It~

MW.d M. ' A,,)

53
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Finully. multiplying the numerator and derioluiimor Of C411 (A26) by bit-. yields

Pr ( 4,,Ii.,i(A271

where A,0 bgA wjv. This analysis Immeidiately yield% cqn (I 3b) of Sectioa 2.

AP'NIIX It
Hall widths for measured Nz (or air) broadened H20) 1rUnAIIIOflS

The following lines show applicable values for the succeeding table. Common parameters: T 297*K. di
1.85 x 10 "es-cm (ground state). d, = .82 x 10 "emi-cm i' Itate). Anderson Theory: Q2 = 3.00 x 10--*su-cm. QFTl 1:

=4.61 x 10-" esu-cm', a = (lO0r)"' = 2.36749. QI II: Q2 3.04 x 10- ' su-cm . a = 2.79. Half widths in cm-'Iatm.
=Results of Benedict and Kaplan at 300*K; for Ref. (16), theoretical values as q~uoted from GATES irl al.;" rot =pure

rotational transtion.

Group Bt1. Lwcr -tUpper 0J. K., K,.

Transition, AtC Qt-r 1 Q1' 11 Experiment &. Reference

5, *6,1,6 rot. 0.10046 0.10045 0.10050 (calibrdtion line)
(0.090) 0.087 (Air, 31B*K), Ref. (2)

0.104 (N 2 300-K), Ref. (1)

2.2,0 *3,1,3 rot. 0.10W,8 0.1061U 0.10629 0.0956 (N12) Ret. (14)

(0.096,) 0.111 (N 2 Ret. (5)
0.111 (N Ref. (b)

3.2,1 4,L.4rot.0.I0S 8t 0. 1 13 111 (1.111443 0.095 (Air), Ref. (7)
3.2,1 4,i,4 (0. 49'S)

1.1,0 *1,2,1 rot. 0.1136'i 0. 1 Ob'4 (1. l06,, 0.16 (N 2) Ref. (a)
(0.102)

3,2,1 *4,3,2 rot. 0.0ii,)[,2 0. W'lb!. 0.0V99 0.12 (N 2 ) R,f. (8)
(0.087)

* 4,2,2 '.~,3,3 rot. 0. 0991 1; 0. 0111 (1. 0 Ili 36 0.13 (N 2) Rel. (a)

5,3,31 G ,6.0 rot. 0.01.48 0.01Ott O.o/1411 0.08 (Air), Net. (9)
(0. l1)It,)

5,3,2 b ,,1 rot. 0.081)84 0.07'i05 0.079111 0.09 (Air-). Ref. (9)

6,3,4 7,6,1 rot. 0.072IS 0.01,10 0.010,43 0.07 (Air), Rel. (9)

6,3,3 -. 7,6.2? rot. 0.0Oil5!1 0.08378 (I. [W'it 14 1.07 (Air).* Ret. (9)
(0.071I)

6,7,56 7.,2 rtut. 11.07302 0. 1131151 0I.11111t I 1.0On (Air).* ROt. (4)

6.1,6 * 7.J rot. 0.083/4 0. oi/ttd o1.0112 I i u.ttl (Air), 6.1. VOI

(0.07b)

45



'Iheoricam c~-.u itlli o l 1( .11)0 11 .dikllil and. I's "%sm c AmI I,

Transit ion ATC QITr I QnrI I I:.pui.mm.., i.H

7,3,4 *8.6,3 rot. 0.1,11920 0. OKU I I It.01161, I0I0 (Air). R.-I (-09
( 0. O01I)

7t,2,6 *8.5,3 rut. 0.01)116% 0. 0141 Oil0. ,!,z 1 0.67 (A im'). R,-. I
(U. ObI,

71,1,7 v 6,4,4 rot. 0.081411 0. 0 )S% 11.111 11 U. (IN (A im-). .- I .0(1

8.2.6 - 9.5,5 rot. 0. o83'- 0. 0I/0 0I. Oill1 0.011 (A is-). 6I.()
(0. 07S)

S,1.5 - 6.2,4 v., 0.101781 0.0111163 (1.14101 1 U i.(' (H,) .H-I. (II

0,3,S 9. ,4,6 v 2  0.01120.1 0.I117 0 11111 H ~ 'V 0A.- U-0 MI 0.11 (
(0.08"ll) 01107 (Air) II. 4 -

6,3,6 107,4,7 v 1 0.011747 0.0~,m8 111", ,l 0. .', Aim'). OW "N t)F I. (I),(

0.4. 0 v,, 93006. 0. 101 1 - 0l.llI M ~i (A? -, H, I. I I

6 ,4 , 2 1 . 5 . v 2 (0 . 0 6 0 )

6.4,3 .,2 v 2  .067b'l7 0.061483 11.01W,4110.,1 (A I -), H16 1 (11),

(0.060)

5,0,2 - 6.,,v4 0.01531l 0. OW0'Y1 II.11It 1).0914 * (A . (I')
(0.0540)(.118(mHI I)

______ -- - -- -6,,--200--A00010001.1 .9 I (

3,1,1 4,4,1 v 2 U.1.121 0. 001691 0,.l 0841/3 o1.096, 04~) 1 V-I.II

4,2,3 *4,1,4 2v82 0. 09941 0.0116 01.111.1% 0.091, (Aim-), H*-I. I,
(0.091)

3,2.2 *3,1,3 2w2 0.10401 0. 1017 0~. 1194 0.1113 (Air), ReI I l

(0.09.6)
2,2*1012? 0. 117 .1 0. 106 I. 1 1111 R V 101 (Air) , -I. I I.2,1, 1.,1 v 2 (0. 104)

3,. , ?22 0.11051 0. 107t.3 0. 1054 0.101 (Air), R1, -I I

221*21222 0.i01 I U. 111116 . I O.ill 01.01'4 (Al), HI. 1 41 1)2,2, 2,,2 v 2 (0. 09b)

3,3,0 *3,2,1 2v 2 0. 0lj4l~jI 0.011.11 1 0. 0l4i 1,3l 0.1 ( A.~) H-I. 1.0

1,, ,0022 0. 110ON,# 0.1021,J 0.11M529 0.101i (Air), H.-A I-I)1,1,1 0.0,02v Y (0.100)

1,1,0 *1,0,1 282 01.123140 0.112981 u. I1 ,11. 119 (Air) , H-AI. bI
(0.1 I 011 )

3,1.2 -2,2,1 2v 2  0I. 111' 61 0.10311 is. 1 0 1711 V.010, (Air) , HI. (II

p1,0.1 *1,1,0 2V2 0. 1?340 U. 11711 o.I 1%1)6 1.110 (Air), R,-I 1 (I1

0,0,0 - 1.,1 Iv2 0.1101' 0.110, 1. 11,11 4). 107 (Air), Ro-t I hI).13.0,3 * 3,1,7 2%02 0.11111 lI.0l,~ op. Ii/ I 11. 10!, (Air), Il-I. (L.

IV 0 . 0.'1 11I s ii i t 1. AI,

t 4I. 8 .11 111 1 1I. 1 4.1.1 i it I4mmit o1. I111i (A.,) 1 6 1 - h ( I

4. 55



*r116 R %A I).%t f asd It 0 I

Tr t I j C 4,1 11 III I ilI

3,, .? ,,1 2v. U. I W', 1). wi, ' 0. 
1

o 0. 098 (At, K--) I t. I I,

.1*2,*2,0 2v 2  1,h (Ai K..11 .I, 7J.

(if. Ulf,

2,0,2 *3,1,3 ?v 2  o.11 11') f).8Iimw 0. 110116 0.101 (Air), Re. (If,)

3,1,3 *4.0,4 2 1) 1 (.I .1I02,o . 1 Imo1 0. 0,1? (A!i') . l- I. (I'.)
___ (0~. iii.,)_ _ _

2,1,2 *2,,1, 2v, 2 U. 100)1 .I 120., b t6). I U87 0 .10U0 (ALI'). R.M( (16)

6,1,0 b,I,4 2V, U1. 102 1 1 )IIJ. IIIJ'I4 Ut. 11 1 009'11 (Air) , 8,). 16,

(U. 0t1'.I

3,0,3 -,4,1,4 2V 2  U. 1 118 ,- 0. 1ut O I0. 106168 0.0'111 (Air), Hr1 I I1.)

4,1,4 5,,, 2v 12 o-I I U U U'103 11i. 013283 0.081) (Air) , ef . (If,)
(U. 1188)

4,1,4 1 4,2,3 2v2  ".0J9.11 0.01,,.1, 1, 0. 0 11.11 S(1.019, (Air), Kr)f (II,
2 0.0110)

4,0,4 S ,1,S 7%0 7 U. 0913, .11 w 3 0..0'l./3'4 ((.01. (Air) H.) R-1 I t

7.1,6 7,2,S 2v 2  1). Wilt71) 0. 0 ll 0 .0'u'1 9 0.08.2 (Air) Kr). (it,)

4,2,3 .l ,16 12 2  0. 102 1 S DI. 10003 0I. 100162 0.089 (Air), 8,1I. (16)
(0. 097 1

7,2,5 - 7,3,4 1v i U1. 1)2811 if. I OI11 0. 1 011 0. ollo (A ir, 4F,-) I 11-
(0. 043)

, 2 , 4 * 6 ,3 , 3 2 v 
2  11.11 2 11 0 . D IIl0'4 - 01. 101107 O .usr (A r , F e.. . ( 1 1 -

,6 , 1 *6,2 11'Yv .061',) U. llt 11 o.l ll. I IA9 0.0,'9 (A.-, R-4) ,

(U. (is'.)

1,1,1 2,2,0 2v 2 1 0107M1, 0.11121,1 0.104.0/I 0.101 (Air), Ref. (i1,)

0I. 090 I

3,2,1 0 3 8.),0 6 v 1  0I.1J08.9.) U. ) -lI o. 113 .j I).0U,) I (Air) , H,) . (It

7,6.1 v U.3 O!v2  0lt,1. 0. tm 9 A1 0 SI.0)3 1 0.0,11 (Air), R,1. (11,)

4,2,!3 b ,3,42 2t 11011W 0.081182 I.Oki 08 0.01 (Air), KR. (It.)

(0.113 07 _ _

7,, 7,10,2 , 0).107.) 0.).1903 11. 1)1141I 0.07.) (Air), 8R-1. If1,)

4,1_1 .,,4 2V2  0. 1111 1. IllI, 1 0.1 Of 1 0.071 (Air), .) 1

8,4,5 v 7, 3 0 I.1711 1 Of, I)',H 11 .101,81 0.07.) lA I ), H,-). (00-

7 , 5 , 6 , 4 3 v 0 . O W L1

-,6, 7,41 2v . Ilu 11 . .16 I. 0,8 0 11 .81 1 1H1 (Ail,), H. (!0)

-- -o. (i -...... '

1,,. 7t.32v II ('14,4) I'l,4. I.( 4,1,0.48)(Ar~ aim :..



Theuirfcl c4I culauimn,i.1 Iy) jinewitdh'.4,d prt...urc %hifhsI2

tri; imi AltC QI I )4 Q17I I XI.,, ,i,, . Not-111

,1 * * 7,? .,b zv 7 0.444,4 1-. 4444 .. M0. l. 4. 411. (A fv * .)

7,3.'. O.W11,. 01 -44/. 44.4)G4644 . 0-4411444 1 o.'4 tAll,64 4.

S,4.1 ;i? v 0/. Oa bU7 4. Ull4). 11. Ol ,/41 41)1- ( A,,,44 4.

S,4 I 4J V.. 444444 t.1 114.4 U.-1 11/,44 it.44,' (A,,) 1-,1 1--)
(04. 111 '4

1,44,1 3'" /V,. ,4 v . 11;1/4 It,41/4 4). 441.14101 1).44/4 (A.. Y,* 4. I 4

b.244 - ,I,% v 0. 10 1-41 U-0.1444.44 4. I iw,41 04. w I (A,, 4,..I4,
C(4. 44k44I

7, 4,4 6. ,3 /v U. OW4.U0 .0.4 4 kilI44 to. WI 1'447 04.011. (A ) , H,.4. 44.

5,54,0 4,.3,14 v 3 (..07;.14 044/44 4.414.44' 44.04/7 (At,-), K. I

(1 . 44*/ /

6,1, 5.3,2 ~ VI 119 0. 0:44 41 1 ).444 411111,0, 0.44A (Ai . F~. ( .

7,2,5. 6,3,36 0 0.415!,4 404 '.4 W- .11U-1 44 I(.44444. (A. ), 1,*4.- 1 4
(4.1 1 1)



Rl . t)DAV44 S IIoI It. A (lit

I' .... Air ()I-1 I IJIY I I 
4
:444''3s ....... l . 44.4,4I *

'4.1 .4 It.))4Ir~4 44.i.') 44.117 (Ali-), k4. I
4, . i'4A 0.4~44. 4.4. OS4 44 114.1

.. .4 of.4. .1,4444 11 4. 4 /11 4 I 0 .404,,1 44

1) . ) 14 4 ,4' 44- 1 1- 11 ). of9 '44 I444. Y

b ':; l~A 0.0i) 4,44 4.U 444 0. 041 

2.44 4.4) . 4.44/44 1. 4)

2. .44 it. It,.' 0 4 44 ,44 4 .181M444

I . 44441). 44.1 ',4 4. Wild 1. 0 .D'I U 14

404,41* 4 /~4)ro . (44.ol'44) "~ 0. (18(Air) .if . ()
4. U. 1A 0444 .,I If.4 4 1 4444 101 .1

17 o. it,) 441 0. loll4 1, 4 44,4t . I'l ,.1 1 4.449,44Y 4

7. ',0 44,). 4, till44 I44. Iof .04.0.14
i .SO4 0. 04 .4 4).4 11 4, 44* 0. 0: ),1

1,1
44.24 *144.)0 44 (1.4l,) 44 (Ar) 14,. 11. t 0 4c

404 if 1 13 11 1Y

I4 ,, I I 4,4,Id44 r..L4. (44.44,, (.04 (Air), V.41 (9)4

I 4 .44i . 0/ If , .1 1 .( 44,4444 1444

4/!4f"" .00 (Air), 44,4. (9)4
4. . ;,4 .24, )li 1 .44444. 14 444/ 0.4Olt4713

i . !.0 444). 44 (1111 . 44444 44 1 1.4444408
(I 4. till /1014 04.41)Y U.' 04.4444 0.3

1,1 349ri.(0.443 0.04 (Air), KRe. (9)
'Min44 A 0. 044.4 If 4. (11, 2 loll 4. 04904

SO. (1 11114 .(117A.0 47

1 . !10 U. 069.4 4.4 44.04, I4T/ 0. 04,4123

I4,'4 v., ~2 (O~0..4., fl.0'3 S (A ir) , -Rf. (44S

2. 504! ,4.44 74,2 )4. 444.4,?44 U. 04463tl
4.S44 !4. i:574, 0. 4 18444 0.0b.6135

I4. I ' 
4 0 2

A 11) (oll.4444wil 0.4435 (Air), kr) . (Ib
.4,44 44.44 1-1)11 it. 14.4 / 1 0.0374,9

2.1.1,41. 14 0444~4 4. 4430.1f; 0.043131
."0f 1).444) Will / 0.OPI-0 4. 031 10

* 48,').) . ,t, (44,4444) 04.037~ (Air), kel4 (16)
i .4, 4444444 Ill 4 1 .4' 4 44I1.4tit'1 44,
4. 4 'I 4444 44 4,444 4 4.442 4l004) ( i) 4, 4,

4.40 4, 44~ /44 44.4 444) 4404411 '44

4.0 1'iv0 ) , if 0.0.184, 4(Air),4 K..4(it

z, 1. A, 044,. 449 .4 I, 1 44. 44l4 444) 4.0')44, Ol 44, .4 I4, (4444 4044 ( i) 4 4

Proof* 4,,4 '.' (1.tll4,44 1,4 ) . 14,131114 (A.) 044 P44I)

of. I . 111 44 4 .4', .) 4) 011 (A ,, I,,,* I4,4l'44It f 10 .11

0.0 111 i.(8 _



Tt hcn: ue L i st Ai ual'sr QFT I) Qh w3I Io i *h'

v 0.1) it Jill 1411 11 /; 1111,11 tVI 1 N

bg.nL4a Alt A)3 3 l (13 1 ,.

min 0 43.3) 0.1 111) -1.1 11. 113 11 /3 ( ;1] ('I ')

2.0 11. 1 It. 0 / 4.1 11 -1 i 11.110 1 0, . 1.1003', (At I * 313 ).3
1.7s 33. (1) 104' 1). "Wit".' 11I 0-1.

1.61) 0.41 )f l . I V143 11 . 0111

1.43) t3. 0101 0t4 .. 10066. 1 I). ll) 344

b~. 3. ?0A 0. .11H 10.1111 / .11 PI
2.b0 0l. 113 1 .111 44/ l 0. 0 1'14-6
?. 00 3.U1131) 0t.IlI.44 0I. (11/!,I

1.11 053.110. 0I? 3. 118'33l 1). 011t'M~
I . %()(0. 3)31 UJ.1 4 11.111 111 33. (11171 41l~

.40 1. lit1117 43. 011,11I 0. tili-I 0 I

14O.1 1 501v0_111 (Air), 1,1 1 (1) 1
b411 3. ;O1A 0.031833 111.113). 3 ) 31t1Il

?.SO if1)3311 131. 01117 O(.13o
2.03 0.01 3)3H 0.1 26.3 0.13 7137
1.75. 3.01713 1).lI0011W3 01.01 01.3

1.60 0.131 8 4 117 J3111!335,') 3 3313'3,I1

1.40 0.03331-4 01.3(10174, 11. (11111 1.1

b . 3.?OA 10.03186, U. 031110 01131143

2.00 in11J4 133 III.1)/1
1.75, 0.0175 0.11111,1f . 0 111.

1.60 11.01 11 13. [)fill 'Al 0I. 11313312

1.50 0.1178 3).311111/, (J.i11114!,11
1.40 3. 03 1733t (.00 314 (3.3(138313

12,2,11 13 1 3112 v33121 33371, ;-I(4t

b . A ..20 0.0.33411 1 )..3/3 3.7 17 0.1.1 (Air'), 313.(13),
.n 2 .0 0.0394 3.0)713 6.3W37743 ( III )

2.00 0.022 /,0 0.3(13341 0/.0) 991) 0.Olt-% (Air), 831. (3))
1.75 0.02720 0.339310II 1311190

1.613 0.077l10 0. 01903 1.03 '913

1.40 0.02720 0.1900 0.3)011190

12,1,11 13 2 v) (33110, (Air), 31-3. kII)
b i. 3.2;01 "2 0. 03331 3.. .33.3 13 18 31/3 0.3 I .170( (A i',), 1 1, .13

am 2.50 0.3.32.3401 0.31"!3 1 f.1373'

2.00 0. 07/1, 1. 13 ,1 33 . till'1,
1.7S 03. O31231.8 3).1331 0.l 1711 ~
1.60 0. O 073 1 03.03 1311/ 1.117P)
1.60 13. 020.03 03.01 Wit. (1-1. 719

1.40 01. WOW1, U I3 &H3 (h3 1.31)7')

15.,2.14 1613,11 v2 130093 (Air-13.(34
b in 3. 20. 3.3103l'1 0..31,13110 41.. l'1 3.001') (Ai) 3* 3

2.60 U. 33711ti(3 03.31111 l i. it 111111 0.0110 (Aim) 31.3. I3.3)
2.00 0.01'.1 (343 3,, 1. 171

1.63)o 307919 0.31 3.1 l.tI IS?
1.40s 3.013199 31333:40", 11.131
1.60 0 .03179 (31.(13'3 11.31 313

3.;01 " 0.1333I31. 0.333333/l 1). 113117 10 33.3,u ,.ni,
in 2.50 0.0191 ' 07.31119'W. 1). 1) '3,

2.010 U.3lit3ill 0 1.13/PI (1.1311 1.
1.26 0. 031 t9'. 0.11133' If. (I 13144

1.50 330 173,1 (1 .31333 13. 11 34'
1.40 0.0337)5, 0. 11.1!17, 133,5'

13.03,13 * 1,12 11.133)13 (Air), R 3.A. (333)

b .i 3.,OA ' 13.03/"4 1 0. f11 IF3 (1. 1111,
7.5,0 0.-07)11 3.) 1. 11 3 " 1 .3.'31
7.031 0.(1-31 .1)1', 1.43,4

.3,33 33~1.1111,16 1 33. 14441 411.4 3 34

If'133. III#... 1 11.1016"I. 1 11 1'1 13 .,

1 .403 331. 3 1 '1 0. 111 14t



K 120 R W ')AVIa' and 18 A. (ii
AI'I1N )IX C

Line shifts fio measured N (air air) IlradencS I11,0 rir.iaisa n, finv ihilts in (-in 'lalt

Tran.ition ArC .1T. QFT i Experimen: t Re:erence

Lower - Upper (,K ,Kc) -0.033E (N.), Refs. (12), k13)
15,1,15 i th,0 16 e -2.0033 (A r), Ref. (:2)

bn 3.2GA 2 .G0j5 C.00039 0.0.,038
2.50 0.002,7 00131 0.J123

1.50 0.0a 9 9 6.01298 0 1 -. 51

,4 . s 10 15 v2  -1.21- (Air), Ref. C-3)
b~n  2 3.2 0.07331 0. 10-.

2.50 0.0 26 G. J 0 0.01i32

1.53 0.00865 C.21).? I 0.01563

,3,0 
9

, . -0.206E (N-1, Reff. (i)
b zn 3.2OA' 1.00058 -. 3 1 -0. . 6

2.5% 1.00018 -0.20 2 -1.01235
1.50 .058 -0.02.29 -0.0235

6,4 , 2 7,5,3 1 - -O.0060 (Air), ef. (12)

t) 3.2C
2  

-5.00401 -0.030-V -4 .n0633
2.50 -0.00.01 .00,55 -0.0360.

0.50 -0.00401 -0.00655 -0. 0601.

, 3 7!,0,2 -0.0059 (Air), Re!. (-3)
J.2 -0.0038d -0.0067 -0.0061
m .n 2 -0.0,386 -3. 30687 -0.2?067
1.53 -0.00388 -0.0687 -0.00617

6,5,2 v 2  0.007

S. -0..2. -7.05 -j. 57
.', - .. ,6;21 - . .b -0. 11617

S6,5, v -0.0070 (Air), Ref. (13)
b .. ' 3:2A

2  
-2.G0433 -0. 00722 -0.00648

2.00 -0.004 33 -0.00752 -0.00666
1.50 -0.00433 -0.00752 -G.00666

5,0,5 6.3 +C.00-4 (Air), Ref. ~.
b,0, : '3.2012 0.00916 0.01346 0.01155

in 2.50 0.00916 0.01346 0.01155

1.so 0. 00916 0.01346 .01ss

_F [ 0

K!O


